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Abstract

We study causal inference when the treatment variable is an aggregation of multiple sub-
treatments. Researchers often report marginal effects for the aggregated treatment, implicitly
assuming the target parameter corresponds to a well-defined average of sub-treatment effects.
We show that, even under ideal conditions such as random assignment, the weights underlying
this average have some key undesirable properties: they are not unique, can be negative, and,
all else equal, these issues become exponentially more likely as the number of sub-treatments
increases and their support grows. We propose diagnostics to detect these problems and in-
troduce alternative approaches to circumvent them, depending on whether sub-treatments are
observed.
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1 Introduction

Causal inference requires asking questions that are precise enough to correspond to well-defined
interventions (Rubin 2005). Yet in many applied settings, data limitations and the need to stream-
line the narrative force researchers to pose causal questions at a level that is too vague to satisfy
this requirement. When the treatment is only loosely defined — when it collapses multiple distinct
versions into a single category — the causal question itself becomes ambiguous. In such cases,
the concern goes beyond identification, pointing to a more fundamental conceptual limitation: the
treatment variable may not correspond to any single coherent intervention at all. Yet, for lack of
better options, researchers do estimate such causal effects in the hope that they capture something
informative. While many implicitly recognize the limitations of this practice, there is no shared
language or theoretical framework to precisely articulate the challenges inherent to this approach,
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or to guide interpretation of the resulting effects. In this paper, we study the consequences of this
widespread practice, aiming to provide an early step in this direction.

Specifically, we study the setting where the researcher estimates causal effects using a treat-
ment variable that aggregates multiple versions of the treatment, or sub-treatments. In these set-
tings, the true causal drivers—these different sub-treatments that represent different underlying
interventions—may be numerous, non-mutually exclusive, and heterogeneous in their effects, while
the aggregated treatment variable serves as a summary measure that simplifies analysis but does
not itself cause the outcome. In these scenarios, researchers often interpret coefficients on aggre-
gated treatments as marginal causal effects, implicitly assuming that these parameters represent
well-defined averages of sub-treatment effects — i.e., specific combinations of precisely defined in-
terventions.

This assumption, however, warrants scrutiny. In this paper, we show that the marginal effects of
an aggregated treatment can be difficult to interpret. Even under ideal conditions for causal infer-
ence, such as random assignment, the reported treatment effects generally correspond to weighted
averages of sub-treatment effects with weights that are not unique and may be negative. Moreover,
the negative weights issue becomes more prevalent as the number of sub-treatments or the support
of each sub-treatment grows. Both issues emerge because of heterogeneous effects across different
sub-treatments. We show that negative weights arise due to incongruent comparisons—those where
a marginal increase in the level of the aggregated treatment involves a decrease in the level of at
least one sub-treatment. The presence of negative weights can, in principle, lead to an aggregated
treatment effect that is negative, even when all sub-treatment effects are positive.

The concern with non-unique weights is that different combinations of sub-treatment effects can
yield the same estimated aggregate effect. In practice, this means the estimated aggregate effect
reflects the impact of one particular mix of interventions, but the specific mix that produced that
estimate is not generally identified. Without diagnostic tools to uncover which mix of interventions
the data actually reflect, there is a risk that the estimate will be misinterpreted to justify interven-
tions that are not supported by the data. This raises an external validity concern, but of a different
kind: it arises from extrapolating the effect from one intervention to another, rather than from the
standard problem of extrapolating the effect of a given intervention from one population to another.

If using an aggregated treatment yields an average treatment effect with non-unique and pos-
sibly negative weights, what should one do to improve causal inference in such a situation? We
offer diagnostics that the researcher can use to convey the extent of incongruency issues in their
application. We also propose alternative estimands that avoid these issues altogether. When sub-
treatment data is available — that is, when the data is sufficiently rich to plausibly assume that
the actual intervention components are observed — researchers can construct weighting schemes
that restrict attention to congruent comparisons alone. In contrast, when sub-treatment data is
unavailable, we show how researchers in this case can still circumvent all issues above by focusing
on certain alternative non-marginal effect parameters.

These aggregation issues arise frequently in practice. Researchers may aggregate treatments due
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to data limitations, or to increase statistical precision, or to simplify their empirical strategy, or
even to streamline narrative exposition. In labor economics, studies of the effects of minority or
immigrant share frequently collapse distinct ethnic or national-origin groups into a single category
(Card, Mas, and Rothstein (2008), Böhlmark and Willén (2020), Lowe (2021)). Similarly, peer
effects research typically defines treatment using a single aggregated statistic of the classroom, such
as the average GPA or SAT score (Sacerdote (2001), Carrell, Fullerton, and West (2013)). In ur-
ban economics, crime measures often aggregate qualitatively different sub-categories such as thefts,
robberies, and homicides (Greenbaum and Tita (2004), Tita, Petras, and Greenbaum (2006), Ih-
lanfeldt and Mayock (2010), Mejia and Restrepo (2016)), while research in environmental economics
regularly treats exposure to natural disasters as a single treatment, despite substantial differences
between earthquakes, floods, and wildfires (Boustan, Kahn, Rhode, and Yanguas (2020), Zhao,
Zheng, and Fu (2022)). In health economics, treatment variables often include composite indices
of health, behavior, or genetic risk—each bundling multiple sub-components that may interact in
complex ways (Finkelstein et al. (2012), Allcott et al. (2019), Barth, Papageorge, and Thom (2020),
Houmark, Ronda, and Rosholm (2024)). Time use studies similarly group distinct activities under
broad labels like “exercise,” “leisure,” or “enrichment” (Fiorini and Keane (2014), Caetano, Kinsler,
and Teng (2019), Jurges and Khanam (2021), Caetano, Caetano, and Nielsen (2024)).

In fact, the practice of using an aggregated measure of the treatment variable is so common that
we often take it for granted in most empirical work. For instance, consider one of the most widely
used treatment variables in applied econometrics: years of schooling. This variable aggregates fun-
damentally different educational experiences—spanning institutions, curricula, teaching methods,
peer groups, and levels of engagement—across the life of the individual. The same value on this
variable may correspond to radically different combinations of sub-treatments across individuals.
Moreover, increasing the number of years of schooling is not a well-defined intervention, because it
never occurs in isolation: it always takes place within a particular context, where specific features
of the schooling experience are altered.

A common initial reaction to our theoretical results is that they seem too damning for empirical
work in causal inference. If even seemingly straightforward interventions become ill-defined once
aggregation issues are taken seriously, it may appear that the very enterprise of causal inference is
at risk. A central contribution of this paper, however, is to show that negative-weight concerns can
be resolved by adopting a non-marginal interpretation of effects, which remains well-defined under
plausible assumptions. Moreover, when marginal effects are unavoidable, another key contribution of
the paper is to provide empirical diagnostics that both assess the severity of the problem and clarify
the weakest assumptions under which a marginal interpretation remains valid. Finally, by raising
awareness of this underappreciated problem and providing tools to improve the interpretation of the
results, this paper helps ensure that causal effects from one intervention are interpreted appropriately
before being extrapolated to inform decisions about another intervention. This also underscores the
value of collecting more detailed datasets that capture features of the aggregated treatment.

The problem we consider is related to the Stable Unit Treatment Value Assumption (SUTVA),
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a foundational concept that appears throughout the causal inference literature (Rubin (1980)).
We maintain the first part of SUTVA, often referred to as no interference or no contamination:
that potential outcomes for unit i do not depend on the treatment assignments of other units.
The second part of SUTVA, often referred to as no hidden versions of treatments, states that
different units do not experience different versions of the same treatment, or different interventions
(Rubin (1980), VanderWeele and Hernán (2013), Imbens and Rubin (2015)). If one operates at
the level of the aggregated treatment, then the issues that we highlight correspond to a violation
of the second part of SUTVA, as different combinations of sub-treatments can generate the same
aggregate treatment amount but different outcomes. It is easy to see in the examples above that
the potential outcome would not be a well-defined function of the aggregated treatment variable.
For instance, the same individual with the same number of years of schooling would likely obtain
very different outcomes under different sub-treatments (e.g., graduating from a top-ranked vs. a
lower-ranked university). The second component of SUTVA has not been studied nearly as much
as the first part of SUTVA. To the best of our knowledge, the only studies discussing violations of
the second condition of SUTVA mainly come from the Epidemiology literature and focus mostly
on mediation analysis (Cole and Frangakis (2009), VanderWeele (2009), Hernán and VanderWeele
(2011), Laffers and Mellace (2020)).1 One exception is VanderWeele and Hernán (2013), who mostly
study mediation, but also consider the context of ex post coarsening of the treatment variable (e.g.,
transforming a multivalued sub-treatment variable into a binary treatment variable), and show that
such practice leads to a violation of SUTVA.2 To the best of our knowledge, no paper has yet
considered aggregations beyond coarsening, or provided estimands that are robust to violations of
the second part of SUTVA.

Our paper suggests that one can still identify meaningful causal effects in a scenario where the
second component of SUTVA is violated for the treatment variable the researcher uses. However,
we require that the underlying sub-treatments satisfy SUTVA — i.e., each sub-treatment is a well
defined intervention. This requirement implies that targeting marginal estimands relies on an addi-
tional assumption: that the sub-treatment observed in the data is sufficiently granular for SUTVA
to plausibly hold. Still, researchers can continue to interpret (non-marginal) causal effects meaning-
fully under violations of SUTVA—provided that sub-treatments satisfying SUTVA are conceptually
well-defined, even if they are unobserved.

Our work also relates to the vast literature on treatment effect heterogeneity, which studies
how the causal effect of a given treatment can vary across units (e.g., Rubin (1974), Holland (1986),
Heckman, Smith, and Clements (1997), Rosenbaum (2002), Imbens and Rubin (2015)). Our findings

1In our setting, the outcome is influenced only by the sub-treatments themselves. The aggregated treatment is
merely an aggregated summary of the underlying vector of sub-treatments, rather than a well-defined intervention.
This contrasts with mediation settings, where the treatment (analogous to our aggregated treatment) is often a
well-defined intervention that affects the outcome through distinct channels or mediators (analogous to our sub-
treatments).

2An example of coarsening is discussed in the context of the Tennessee STAR experiment on class size, where
Adusumilli, Agostinelli, and Borghesan (2025) show that the “small class” status corresponded to different actual
class sizes across schools, reflecting local implementation constraints.
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suggest that when treatments are aggregated, what appears to be treatment effect heterogeneity may
instead reflect sub-treatment heterogeneity—that is, heterogeneity arising from distinct underlying
components of the treatment itself—which is a violation of the no hidden versions of treatments
component of SUTVA. Returning to the years of schooling example, the effect of one additional year
of schooling may obscure heterogeneity in educational experiences even for the same individual. For
instance, the additional year could reflect a counterfactual enrollment in a five-year major such as
engineering, rather than a four-year major like economics. In this case, what looks like a marginal
“year effect” partially reflects differences in content, difficulty, and the credential ultimately earned.
Crucially, this heterogeneity is not across individuals, but within the same individual under different
sub-treatments. As a result, the relevant unit of potential outcome variation is not the individual
alone, but the individual–sub-treatment pair. Although some empirical work has grappled with
these issues—contrasting “heterogeneous treatments” and “heterogeneous treatment effects” (e.g.,
Lechner (2002), Plesca and Smith (2007), McCall, Smith, and Wunsch (2016), Caetano and Ma-
heshri (2018), Smith (2022))—to our knowledge, there is no formal framework for identifying or
interpreting causal effects in such settings. One exception is Heiler and Knaus (2025), which ad-
dresses related concerns about heterogeneous treatments by showing how group-level heterogeneity
analyses can be misleading in this context, and provides a decomposition to separate causal effect
heterogeneity from spurious differences driven by differential assignment to versions of treatment.

We illustrate the issues due to aggregation and our approaches to circumvent them in an appli-
cation concerning the effects of enrichment activities on children’s skills, based on Caetano, Cae-
tano, and Nielsen (2024). The treatment variable—time per week spent on enrichment activities—
aggregates time spent on homework, music lessons, and sports, among other extracurricular ac-
tivities. This is an application where sub-treatments reflecting detailed activities of the children
are observed, which allows us to diagnose how much of an issue incongruency is if the aggregated
treatment is used as the treatment variable, as done in that paper. In this application, incongru-
ency is important, as some aggregate marginal effects put at least 30-40% weight on incongruent
comparisons. Estimates for alternative parameters that we propose, which exclude incongruent
comparisons, are roughly twice as large in magnitude.

The paper is organized as follows. Section 2 describes the causal setting that we consider,
establishes the necessary notation, and formally defines both congruency and the relevant target
parameters. Section 3 presents the main challenges for identification and for interpreting these types
of parameters. Section 4 proposes alternative parameters that rectify the challenges of aggregated
treatment, including those that do not require observation of sub-treatment data. Section 5 delivers
an empirical illustration from the time-use literature, highlighting both the problems introduced
by aggregated treatment and the solutions we propose. Finally, Section 6 offers some concluding
remarks. The Appendix provides additional results and proofs.
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2 Aggregated Treatment Setting

This section (i) provides notation and formalizes the setting that we consider, (ii) introduces notions
of congruent and incongruent sub-treatment vectors, and (iii) defines our main target parameters.

2.1 Notation and Setup

We consider a setting where a researcher is interested in understanding the relationship between an
outcome and a treatment. In our application, the outcome is a standard measure of noncognitive
skills, and the treatment variable is a measure of time the child spends on enrichment activities.
We denote the outcome variable by Y . The treatment variable is comprised of different types of
enrichment activities, which can vary in amount across different units. Let Sik denote the amount
of component k of the treatment that unit i experiences. We refer to Sk as the kth sub-treatment,
and Sk denotes the support of the kth sub-treatment. For example, if “doing homework” is the
kth version of enrichment activity, then Sik = 2 for children who do two hours of homework. Next,
define Si = (Si1, Si2, . . . , SiK) where K denotes the total number of versions of the treatment. We
refer to Si as a unit’s sub-treatment vector. Let S denote the support of S. We consider the
case where the sub-treatments are discrete and share a common support—we consider this case to
focus the exposition of the paper and note that both of these conditions could be relaxed without
substantively changing our results below.

We also define the aggregated treatment variable Di = A(Si) where A(s) is an aggregation
function that maps sub-treatments to a scalar value of the aggregated treatment variable. Let D
denote the support of D and D>0 = D \ {0} denote the support of D excluding D = 0. To keep
the discussion concrete, we often focus on the case where A(s) =

∑K
k=1 sk—where the aggregated

treatment variable adds up all of the underlying components of the sub-treatment vector. How-
ever, other types of aggregation are possible as well; some of our results hold immediately for any
aggregation scheme, while others would require minor modifications. Two important, immediate
properties of the aggregated treatment are that: (i) it is fully determined by the sub-treatments,
and (ii) different sub-treatments can lead to the same value of the aggregated treatment.

The discussion above provides a definition of aggregated treatment. Based on the aforementioned
properties of aggregation, we define the set

Sd := {s ∈ S : A(s) = d}

where A(·) is the aggregation rule. Thus, Sd is the set of distinct sub-treatment vectors that lead
to a particular value of the aggregated treatment (D = d). We refer to Sd as the aggregation set
corresponding to aggregated treatment d. We use the terminology sub-treatment group sd to refer
to the set of units that experience sub-treatment vector sd.

Example 2.1. To fix ideas in the discussion below, consider a simplified version of our application
where there are three different types of enrichment activities: (1) homework, (2) music lessons, and
(3) sports. Children can participate in any of these enrichment activities. To simplify the discussion
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in the example, here we binarize each sub-treatment by only keeping track of whether or not the child
participates in each enrichment activity, although the theory for our paper additionally allows for sub-
treatments to be multivalued. The aggregated treatment D indicates the total number of enrichment
activities that a child does. Children with the same value of the aggregated treatment, however, can
experience different combinations of sub-treatments. For example, one student who does homework
and music lessons, and another student who does homework and sports, both participate in two
enrichment activities. We can define Sd for any possible value of d,

S0 = {(0, 0, 0)} S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} S2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} S3 = {(1, 1, 1)},

where, for example, (1, 1, 0) ∈ S2 indicates the sub-treatment vector of participating in homework
and music lessons but not playing sports.

Because we are interested in causal effects, we also define potential outcomes. Let Yi(s) denote
the outcome that unit i would experience under sub-treatment vector s. The observed outcome
is equal to the potential outcome corresponding to the observed sub-treatment vector; that is,
Yi = Yi(Si). Implicit in this expression is that we impose SUTVA (parts 1 and 2) at the level of the
sub-treatment—we formalize this in Assumption 1 below. Notice that potential outcomes are only
defined at the sub-treatment level. We do not define potential outcomes in terms of the aggregated
treatment variable, as the aggregated treatment variable itself is non-causal and contingent upon
the aggregation scheme.

Our reading of the literature suggests that common empirical practice is to regress the outcome
on the aggregated treatment D; i.e.,

Yi = α0 + α1Di + ei (1)

and to interpret α1, the coefficient on D, in terms of marginal effects.3 Writing Di in terms of
sub-treatments in the above regression, we have that

Yi = α0 + α1(Si1 + Si2 + · · ·+ SiK) + ei

which suggests that homogenous effects across different sub-treatments is an important implicit
assumption for this regression to be able to recover the marginal effect of the sub-treatments on the
outcome. One of our main goals below is to understand how to interpret marginal effects of D in
settings where there can be heterogeneous effects of the sub-treatments.

3A representative example comes from Mejia and Restrepo (2016), which studies the effects of property crime
(their treatment variable) on different types of household expenditure. They construct an aggregate measure of
property crime by averaging the rate of robberies and burglaries (their sub-treatments). Robberies and burglaries are
distinct crimes. The main difference is roughly that robberies involve directly stealing from someone while burglaries
involve entering a structure to steal (see Federal Bureau of Investigation (2018a) and Federal Bureau of Investigation
(2018b) for more details). Their main results involve interpreting coefficients on this aggregated treatment variable
in terms of marginal effects. For example, they write: “conditional on controls, the coefficient of crime on total visible
and non-steal-able consumption is negative and significant at the 5% confidence level. In particular, a 10% increase
in property crime is associated with a 1.45% decline in the consumption of visible and non-stealable goods...”
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2.2 Congruent and Incongruent Sub-treatment Vectors

The notion of a marginal effect is more complicated in applications with sub-treatments. In this
section, we distinguish between congruent and incongruent sub-treatment vectors, which is then
useful for precisely defining marginal effect parameters in the next section. Define the marginal set,
i.e., the set of neighboring aggregation sets, indexed by d, as

M(d) := {(sd, sd−1) ∈ Sd × Sd−1}

for all d ∈ D>0. That is, M(d) represents the marginal set of K-tuple sub-treatment vector pairs
whose L1 norm equals either d or d− 1.

Definition 2.1 (Congruent and Incongruent Sub-treatment Vectors). For the sub-treatment vectors
(sd, sd−1) ∈ M(d), define the binary congruence relation ≻+++ as: sd ≻+++ sd−1 if sd = sd−1 + 1k for
some k, where 1k is the unit vector with kth element equal to one and zero otherwise. If sd ≻+++ sd−1,
then we say that sd and sd−1 are congruent; otherwise, we say that they are incongruent.

Definition 2.1 defines congruent and incongruent sub-treatment vectors. In particular, two sub-
treatment vectors sd and sd−1 are congruent if they correspond to neighboring aggregation sets, and
the value of each element of the sub-treatment vector sd is equal to the value of the corresponding
element of vector sd−1, except for one element. Sub-treatment vectors sd and sd−1 are incongruent
if they are from neighboring aggregation sets, but the value of more than one element is different.

Example 2.1 (continued). Consider the sub-treatment (1, 0, 0) ∈ S1 (i.e., this is the sub-treatment
that amounts to doing homework but not doing music lessons or sports). (1, 1, 0)—doing homework
and music lessons but not sports—is congruent with (1, 0, 0). (1, 0, 1)—doing homework and sports
but not music lessons—is also congruent with (1, 0, 0). (0, 1, 1)—doing music lessons and sports but
not homework—is incongruent with (1, 0, 0).

It is also helpful to define the sets of congruent and incongruent sub-treatment vectors. In
particular, define

M+(d) := {(sd, sd−1) ∈ M(d) : sd ≻+++ sd−1}

for all d ∈ D>0, where M+(d) represents the set of congruent sub-treatments vectors, and M−(d) :=

M(d) \M+(d), which represents the set of incongruent sub-treatment vectors.

2.3 Target Parameters

This section defines the main target parameters that we consider in the paper. We primarily focus
on different weighted averages of marginal changes across sub-treatment vectors, since it is common
empirical practice in this setting to interpret or report the coefficient on the aggregated treatment
variable in terms of marginal effects. First, for (sd, sd−1) ∈ M(d), define the marginal average
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treatment effect on the treated (MATT) as:

MATT(sd, sd−1) := E[Y (sd)− Y (sd−1)|S = sd]

which is the causal effect of moving from sub-treatment vector sd−1 to sd for sub-treatment group
sd.4 MATT(sd, sd−1) is defined for all (sd, sd−1), regardless of whether or not sd and sd−1 are
congruent. Sometimes we use the notation MATT+(sd, sd−1) to indicate a disaggregated marginal
average treatment effect on the treated of congruent sub-treatments (sd, sd−1) ∈ M+(d). Likewise,
we sometimes use the notation MATT−(sd, sd−1) to indicate a disaggregated marginal average
treatment effect on the treated of incongruent sub-treatments (sd, sd−1) ∈ M−(d).

Given our interest in aggregation, next we introduce a parameter that is a weighted average of
congruent MATT+’s:

AMATT+
w+(d) :=

∑
(sd,sd−1) ∈ M+(d)

w+(sd, sd−1) · MATT+(sd, sd−1) (2)

where w+ is some weighting function that satisfies w+(sd, sd−1) ≥ 0 for any (sd, sd−1) ∈ M+(d),
and

∑
(sd,sd−1) ∈ M+(d)

w+(sd, sd−1) = 1. Following the terminology of Blandhol, Bonney, Mogstad,

and Torgovitsky (2025), we refer to parameters like AMATT+
w+(d) that are weighted averages (with

all non-negative weights) of MATT+(sd, sd−1) as weakly causal.5

Finally, although our main interest is in the effects of congruent sub-treatments, in some cases,
a researcher may be interested in the effects of different sub-treatment vectors for a fixed amount
of aggregated treatment. We refer to these as substitution average treatment effects on the treated
(SATT).6 For sd and s′d both in Sd, define

SATT(sd, s
′
d) := E[Y (sd)− Y (s′d)|S = sd]

such that sd = s′d+1j−1l, where 1j and 1l denote the unit vector for the jth and lth coordinates. In
other words, there is a unit exchange between the jth and lth sub-treatments from sd to s′d. Later,
we show that there is often an interesting connection between incongruent MATT’s and SATT’s.

4We primarily focus on on-the-treated type parameters because it is simpler to provide natural weighting schemes
for some of the aggregated parameters that we consider in this section relative to unconditional parameters. In
addition, unconditional parameters also tend to require stronger identification assumptions in our setting. That said,
extending our arguments to target unconditional parameters seems straightforward.

5In Section 4.2, we consider more specific aggregated parameters (i.e., with a specific weighting scheme rather than
allowing for any weighting scheme satisfying the criteria above). However, we note here that, with an aggregated
treatment, this can introduce some additional complications. Therefore, we defer this discussion to later in the paper.

6SATT’s have a precise mathematical definition—a local tradeoff between two sub-treatments at a fixed amount
of aggregated treatment. We call this a substitution effect as, in many applications (e.g., our application on enrich-
ment activities), this parameter coincides with an intuitive notion of substituting between different sub-treatments.
However, this intuition may not apply in all applications (e.g., it is unnatural to think of “substitution” in the nat-
ural disaster applications mentioned in the introduction); still, regardless of the exact terminology for a particular
application, these types of terms continue to be relevant for our results below.
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3 Challenges to Identification

This section outlines several important difficulties that arise in applications with aggregated treat-
ments, even under otherwise ideal conditions for causal inference. The discussion in this section
is geared towards interpreting the marginal effect of the aggregated treatment on the outcome in
terms of the underlying sub-treatments and the complications that this can induce. The results are
most relevant for applications where the sub-treatments themselves are not observed, but would
continue to apply in applications where the researcher observes the sub-treatments yet still decides
to use an aggregated treatment. Many of the expressions below include terms that condition on
the sub-treatment group—if the sub-treatments are not observed, then these terms would not be
identified, though they are still useful to consider as underlying building blocks of the aggregate
marginal effect.

3.1 Causal Framework

We begin by formalizing what we mean by sub-treatments. In our paper, the key difference be-
tween the sub-treatment vector and the aggregated treatment is that the sub-treatments satisfy the
second part of SUTVA, often referred to as no hidden versions of treatment, while the aggregated
treatment does not (see Rubin (1980), Robins and Greenland (2000), VanderWeele (2009), Hernán
and VanderWeele (2011), Imbens and Rubin (2015), and Hernán (2016) for more discussion about
SUTVA). In particular, we make the following assumption.

Assumption 1 (No Hidden Versions of Sub-treatments relative to S). If unit i experiences sub-
treatment vector s, then its observed outcome equals the potential outcome corresponding to that
sub-treatment vector; i.e., for all s ∈ S,

Si = s =⇒ Yi = Yi(s), where Yi(s) is a well-defined function of s.

Throughout the paper, we maintain that the sub-treatments satisfy Assumption 1. Yi(s) being
a well-defined function of s rules out “hidden sub-versions” of the sub-treatments. This condition
implies that knowing s pins down a unit’s potential outcome from experiencing that sub-treatment.7

In our running example, where the sub-treatments are homework, music, and sports, it says that
further sub-dividing the sub-treatments would not change the potential outcomes; for example, the
potential outcomes from doing 2 hours of homework with mom, playing 1 hour of piano, and playing
1 hour of soccer are the same for all units as the potential outcomes from doing 2 hours of homework
with dad, playing 1 hour of guitar, and playing 1 hour of basketball. On the other hand, in our
paper, SUTVA for the aggregated treatment is generally violated in that Yi(d) is not a well-defined
function of d—in our example, if Di = d, a child’s potential outcome still depends on which versions
(homework, music, or sports) the child actually experienced.

7Note that this assumption represents SUTVA entirely (for multivariate treatment S), since it also implicitly
assumes the first part of SUTVA—it rules out the possibility that the treatment level of other units j ̸= i affects the
potential outcome of unit i.
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Throughout the paper, we maintain that the K researcher-specified sub-treatments satisfy As-
sumption 1. In Appendix A, we provide some practical guidance for defining the sub-treatments in
a particular application.

Next, we introduce the primary assumption for identifying various aggregated and disaggregated
average treatment effect parameters.

Assumption 2 (No Selection). For any s ∈ S, Y (s) ⊥⊥ S.

Assumption 2 states that the distribution of potential outcomes of any sub-treatment vector is
independent of the actual sub-treatments experienced. It would hold by construction if the sub-
treatments were randomly assigned. The main implication of this assumption is that, for any two
sub-treatments s, s′ ∈ S, E[Y (s)|S = s′] = E[Y (s)|S = s] = E[Y |S = s], which would be identified
in applications where the sub-treatments are observed. Thus, it immediately follows that

MATT(sd, sd−1) = E[Y |S = sd]− E[Y |S = sd−1] and SATT(sd, s
′
d) = E[Y |S = sd]− E[Y |S = s′d]

under Assumption 2 (see Propositions C.1 and C.2 in Appendix C).
Although this assumption is likely to be strong in many applications, we take it as a natural

baseline for our setting—it provides a starting point that is as favorable as possible for causal infer-
ence, and, hence, allows us to emphasize issues related to aggregation in the discussion below. Many
of our results are expressed in terms of causal effect parameters which use Assumption 2; however,
absent Assumption 2, versions of the issues related to aggregation that we highlight continue to ap-
ply, just without a causal interpretation. Moreover, extending our arguments to other identification
strategies seems straightforward, at least in some leading cases. For example, under selection on
observables, all of our identification results would go through, conditional on covariates. Similarly,
our arguments can be extended to difference-in-differences identification strategies by replacing the
level of the outcome with the change in outcomes over time in the assumptions and results in this
section. Extending our results to other settings (e.g., instrumental variables, regression discontinu-
ity, or bunching) might introduce additional complications, but we conjecture that versions of the
issues that we point out stemming from aggregated treatment would continue to apply. Finally, we
note that our results on marginal effects go through under a weaker, local version of Assumption 2,
which we discuss in more detail in Appendix B.1.

3.2 A Decomposition of Marginal Effects with Aggregated Treatment

This section contains one of our main results, which is a decomposition of the marginal effect of the
aggregated treatment in terms of MATT parameters.

Theorem 3.1. Under Assumptions 1 and 2, and for any weighting function w(sd, sd−1) such that

(i)
∑
sd∈Sd

w(sd, sd−1) = P(S = sd−1|D = d− 1),

(ii)
∑

sd−1∈Sd−1

w(sd, sd−1) = P(S = sd|D = d),
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E[Y |D = d]− E[Y |D = d− 1] =
∑

(sd−1,sd)∈M+(d)

w(sd, sd−1) ·MATT+(sd, sd−1)

+
∑

(sd−1,sd)∈M−(d)

w(sd, sd−1) ·MATT−(sd, sd−1)

Theorem 3.1 shows that, under Assumptions 1 and 2, the change in the mean of Y given a one
unit increase in the aggregated treatment D can be decomposed into a weighted average of congru-
ent and incongruent MATT parameters. There are several notable features of this decomposition
that warrant further examination in the sections that follow. First, in Section 3.3, we show that
the incongruent MATT− parameters that appear in the proposition can be difficult to interpret.
Second, the weights that satisfy the criteria in Theorem 3.1 are non-unique, and, given the difficulty
of interpreting incongruent comparisons, ideally, we would like there to be a compatible weight-
ing scheme that does not put any weight on these incongruent comparisons.8 With this in mind,
Section 3.4 (i) shows that the number of incongruent comparisons grows rapidly in the number of
distinct sub-treatments relative to the number of congruent comparisons; (ii) provides conditions
under which it is guaranteed that there exists a valid weighting scheme that puts no weight on
incongruent comparisons; (iii) characterizes settings where putting weight on incongruent compar-
isons is unavoidable; and (iv) shows how to test whether any of the aggregation issues mentioned
in this paper are empirically relevant.

Remark 3.1 (Descriptive Decomposition). In Proposition C.3 in Appendix C, we provide a non-
causal version of Theorem 3.1 that does not invoke Assumption 1 or 2 (in fact, this is the key step in
proving Theorem 3.1). Thus, even if the researcher views E[Y |D = d]−E[Y |D = d−1] descriptively,
the issues that we highlight coming from D being an aggregation of the sub-treatments continue to
apply.

Remark 3.2 (Regression). As discussed above, it is common in empirical work to estimate a re-
gression like the one in Equation (1) that includes an aggregated treatment variable. In Proposition
B.1 in Appendix B, we show that α1, the coefficient on D in the regression in Equation (1), can be
expressed as

α1 =

N̄∑
d=1

ωreg(d) ·
(
E[Y |D = d]− E[Y |D = d− 1]

)
8The non-uniqueness of the weights in Theorem 3.1 is conceptually different from all decompositions that we

are aware of in econometrics that show up in other contexts, such as continuous treatments (e.g., Yitzhaki (1996)
and Callaway, Goodman-Bacon, and Sant’Anna (2025)), regressions that include covariates (e.g, Angrist (1998),
Sloczynski (2022), and Hahn (2023)), two-stage least squares (e.g., Ishimaru (2024) and Blandhol, Bonney, Mogstad,
and Torgovitsky (2025)), and fixed effects regressions (e.g., de Chaisemartin and D’Haultfoeuille (2020), Goodman-
Bacon (2021), Sun and Abraham (2021), Caetano and Callaway (2024)). Non-uniqueness arises because we decompose
the marginal effect of a more aggregated variable in terms of the marginal effects of less aggregated variables, which
is an important difference relative to all of the aforementioned papers.
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where the regression weights are

ωreg(d) :=

(
E[D|D ≥ d]− E[D]

)
· P(D ≥ d)

Var(D)

and satisfy the properties: (i) ωreg(d) ≥ 0 for all values of d ∈ D>0, and (ii)
N̄∑
d=1

ωreg(d) = 1, where

N̄ is the maximum on the support of D. The result above essentially holds using a discrete version of
the argument in Yitzhaki (1996). The regression weights, ωreg(d), have reasonable though less than
ideal properties (see Appendix B.2 for more details); more importantly, however, α1 is a weighted
average of E[Y |D = d]−E[Y |D = d−1]—the same aggregate marginal effect that we decomposed in
Theorem 3.1. Thus, all of the issues about incongruent MATT−’s and non-unique weights discussed
below continue to apply when using regressions that include an aggregated treatment variable.

3.3 Interpreting Incongruent Comparisons

The decomposition in Theorem 3.1 in the previous section showed that E[Y |D = d] − E[Y |D =

d− 1], the marginal effect of the aggregated treatment, included the incongruent MATT−(sd, sd−1)

parameters. How should incongruent marginal causal effect parameters be interpreted? This section
provides two answers to this question. First, it shows that these incongruent parameters can be
expressed in terms of a congruent MATT+ parameter and a sequence of substitution effects, the
SATT parameters discussed above. Second, it shows that incongruent parameters can be expressed
as a sequence of congruent MATT+ parameters, but that almost half of the MATT+ parameters in
this sequence enter with negative weights. In either case, it implies that MATT−(sd, sd−1) is hard
to interpret.

Incongruent Comparisons and Substitution Effects

The following proposition re-expresses incongruent MATT− parameters in terms of a congruent
MATT+ parameter and a path-dependent sum of substitution effects.

Proposition 3.1. Under Assumptions 1 and 2, for all (sd, sd−1) ∈ M−(d) and for any s′d−1 that
is congruent with sd, it holds that

MATT−(sd, sd−1) = MATT+(sd, s
′
d−1) +

B−1∑
b=0

SATT(s
(b)
ϕ, d−1, s

(b+1)
ϕ, d−1)

where ϕ := (x(0), . . . , x(B)) ∈ C(s′d−1, sd−1) represents a particular set of chained vectors from the set
of sets of chained sub-treatment vectors that create a unit-exchange pathway between sub-treatment
vectors s′d−1 and sd−1 within the same aggregation set Sd−1; and s

(b)
ϕ , s

(b+1)
ϕ are linked sub-treatment

vectors that belong to the chain ϕ.9

9Generally, C(s′d, s′′d) :=
{
(x(0), . . . , x(B))

∣∣x(0) = s′d, x
(B) = s′′d , for b = 0, . . . , B − 1 : x(b) ∈ Sd, ∥x(b+1) − s′′d∥1 <

∥x(b)−s′′d∥1
}
, for any d ∈ D>0 and some B ∈ N, is the set of chained sub-treatment vectors that create a unit-exchange
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Proposition 3.1 shows that incongruent MATT−’s can be decomposed into alternative congruent
causal effect parameters and substitution effects. This shows that the aggregate treatment effect is
composed of both marginal sub-treatment effects and substitution effects. Although substitution
effects could be of interest in their own right, they are a different type of parameter from MATT+;
they involve substituting across sub-treatments rather than a marginal increase in one of the sub-
treatments.

Example 2.1 (continued). Suppose that s2 = (1, 1, 0), and s1 = (0, 0, 1), which are incongru-
ent, and consider s′1 = (1, 0, 0). Then, using the argument from Proposition 3.1, it holds that
MATT−(s2, s1) = MATT+(s2, s

′
1)+SATT(s′1, s1). Or, in other words, the incongruent causal effect

of both doing homework and music lessons relative to playing sports can be decomposed into (i) the
congruent causal effect of both doing homework and music lessons relative to only doing homework
and (ii) the substitution effect of doing homework relative to playing sports.

By plugging the result of Proposition 3.1 into the decomposition of E[Y |D = d]−E[Y |D = d−1]

in Theorem 3.1, it follows that the aggregate marginal effect is hard to interpret because it includes
a mix of congruent MATT+’s and substitution effects—two different types of parameters. And, for
example, a positive value of E[Y |D = d]− E[Y |D = d− 1] could be mainly driven by substitution
effects rather than effects of marginal increases in any of the sub-treatments.10

Incongruent Comparisons and Negative Weights

The next proposition decomposes both substitution effects and incongruent MATT−’s into a path-
dependent sum of congruent causal effect parameters.

Proposition 3.2. Under Assumptions 1 and 2, for any sd−1, s
′
d−1 ∈ Sd−1 such that sd−1 = s′d−1 +

1j−1l, where 1j and 1l are unit vectors for coordinates j and l, and for any s′d ∈ Sd that is congruent
with both sd−1 and s′d−1, it holds that

SATT(sd−1, s
′
d−1) = MATT+(s′d, s

′
d−1)−MATT+(s′d, sd−1)

Moreover, for any incongruent parameter and chain ϕ ∈ C(s′d−1, sd−1):

MATT−(sd, sd−1) = MATT+(sd, s
′
d−1) +

B−1∑
b=0

MATT+(s
(b)
ϕ, d, s

(b)
ϕ, d−1)−

B−1∑
b=0

MATT+(s
(b)
ϕ, d, s

(b+1)
ϕ, d−1)

pathway between sub-treatment vectors s′d and s′′d which belong to the same aggregation set Sd.
10The discussion in this paragraph is conceptually related to the well-known decomposition in Goodman-Bacon

(2021) that, in the context of difference-in-differences identification strategies estimated using two-way fixed effects
regressions, relates the coefficient of a binary treatment variable to two different types of causal effect parameters:
(i) causal effects of the treatment itself and (ii) treatment effect dynamics. This is typically taken as a negative
result for the two-way fixed effects regression, not because treatment effect dynamics are inherently uninteresting to
study, but rather because mixing together two different types of parameters is hard to interpret. Similarly, in our
context, the SATT parameters could be interesting to learn about, but they do not involve a marginal increase in
any sub-treatment and, hence, make the aggregate marginal effect difficult to interpret.
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The first part of Proposition 3.2 says that any substitution effect between two sub-treatment
vectors that share a unit exchange in treatment is equivalent to the difference between two congru-
ent MATT+’s. The second part says that an incongruent MATT− parameter can be decomposed
into congruent MATT+ parameters but that almost half of the MATT+ parameters in this de-
composition are included with a negative sign; this part follows from plugging the expression for
SATT(sd−1, s

′
d−1) in the first part into Proposition 3.1 above.

Example 2.1 (continued). Resuming the example from the previous section, let s2 = (1, 1, 0),
s′2 = (1, 0, 1), s1 = (0, 0, 1), and s′1 = (1, 0, 0). Using the argument in the first part of Proposition
3.2, it holds that SATT(s′1, s1) = MATT+(s′2, s1)−MATT+(s′2, s

′
1). In words, the substitution effect

of doing homework relative to playing sports is equal to the difference between (i) the congruent causal
effect of doing homework and playing sports relative to only playing sports and (ii) the congruent
causal effect of doing homework and playing sports relative to only doing homework.

Using the argument from the second part of the proposition, it holds that MATT−(s2, s1) =

MATT+(s2, s
′
1) + MATT+(s′2, s1) −MATT+(s′2, s

′
1). That is, the incongruent causal effect of both

doing homework and music lessons relative to playing sports can be decomposed into (i) the congruent
causal effect of both doing homework and music lessons relative to only doing homework, (ii) the
congruent causal effect of doing homework and playing sports relative to only playing sports and (iii)
the congruent causal effect of doing homework and playing sports relative to only doing homework;
however, the congruent effect (iii) enters the decomposition negatively.

By plugging the second part of Proposition 3.2 into the decomposition in Theorem 3.1, it follows
that the aggregate marginal effect can be fully expressed as a weighted average of congruent MATT+

parameters. However, due to the negative signs on some MATT+ parameters in Proposition 3.2, it
is evident that weights on some MATT+ parameters can be negative.11 Negative weights on un-
derlying “building block” parameters have been emphasized in recent work in econometrics as being
indicative of an “unreasonable” weighting scheme (e.g., de Chaisemartin and D’Haultfoeuille (2020)
and Mogstad and Torgovitsky (2024), among others). For example, given enough heterogeneity in
the congruent MATT+’s, negative weights introduce the possibility of sign reversal, where, e.g., the
MATT+’s could all be positive but E[Y |D = d]− E[Y |D = d− 1] could be negative.

3.4 Non-unique Weights: When Is Aggregation a Problem?

The previous section highlighted that the incongruent causal effect parameters MATT−(sd, sd−1)

are difficult to interpret. In this section, we return to the other main issue in Theorem 3.1: that the
weights are non-unique. Let Wd denote the set of weighting schemes that satisfy the conditions in
Theorem 3.1. If there exists a weighting scheme in Wd that puts zero weight on all MATT−(sd, sd−1),

11To be clear, even if MATT+(sd, sd−1) shows up negatively in the decomposition from being part of the chain of
congruent MATT+’s corresponding to an incongruent MATT−, recall that it also shows up positively in the first term
in Theorem 3.1, and whether or not it ultimately shows up with a positive or negative weight depends on the relative
magnitude of the corresponding weights. Thus, the results in this section do not indicate that negative weights on
certain MATT+ parameters necessarily occur, but rather that negative weights can occur.
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then there exists an interpretation of E[Y |D = d] − E[Y |D = d − 1] that only puts weight on
MATT+(sd, sd−1). This would fully bypass the problems of interpreting MATT−(sd, sd−1) that we
discussed above.

Implicit in the discussion above is that there can be multiple weighting schemes that satisfy
the conditions in Theorem 3.1. Thus, we start this section by showing that the weights are indeed
non-unique.12 A leading example of weights that are always in Wd are the product weights P(S =

sd|D = d)× P(S = sd−1|D = d− 1). This weighting scheme necessarily implies that the aggregate
marginal effect includes positive weight on incongruent comparisons. However, they are not the only
weights that satisfy the criteria mentioned in the proposition, which we demonstrate by returning
to our example.

Example 2.1 (continued). For d ∈ {1, 2}, suppose that P(sd|D = d) = 1/3 for all sd ∈ Sd.
Consider the following weights

wA(sd, sd−1) =


1

6
(sd, sd−1) ∈ M+(d)

0 (sd, sd−1) ∈ M−(d)

i.e., wA(sd, sd−1) puts 1/6 weight equally on all six congruent comparisons and 0 weight on the three
incongruent comparisons. Alternatively, consider the following weights

wB(sd, sd−1) =

0 (sd, sd−1) ∈ M+(d)
1

3
(sd, sd−1) ∈ M−(d)

i.e., these are weights that involve putting 1/3 weight equally on all three incongruent comparisons
and 0 weight on the six congruent comparisons. Both wA(sd, sd−1) and wB(sd, sd−1) meet the require-
ments for the weights that are discussed in Theorem 3.1. Besides wA(sd, sd−1) and wB(sd, sd−1),
many other weighting schemes also satisfy the same requirements.

The previous example demonstrates that the weights in Theorem 3.1 are non-unique. There are
different weighting schemes for MATT’s that can rationalize the aggregate marginal effect. Different
weighting schemes can lead to very different interpretations of the aggregate marginal effect. In the
example, one valid weighting scheme leads to an interpretation of E[Y |D = d]− E[Y |D = d− 1] as
a weighted average that only includes congruent MATT+’s. This weighting scheme is in line with
our ideal scenario above—it provides an interpretation of the aggregate marginal effect E[Y |D =

d]− E[Y |D = d− 1] that is fully congruent.
12Two exceptions are worth mentioning. First, the weights are unique when there is a single unique version of the

treatment, K = 1. In this case, for any level of the aggregated treatment, there is only one sub-treatment, so that
w(sd, sd−1) = 1. Second, the weights are also unique when d = 1 or d = N̄ . Take, for instance, the case where d = 1,
so that we are interested in E[Y |D = 1] − E[Y |D = 0]. Regardless of how many distinct sub-treatments there are,
the only sub-treatment vector such that d = 0 is s = 0K . This implies that P(S = 0K |D = 0) = 1, and the only
weights that satisfy the criteria for the weights in Proposition C.3 are w(s1, s0) = P(S = s1|D = 1), implying that
the weights are unique. An analogous argument holds for d = N̄ on the basis that there is only one sub-treatment
vector (the one where each sub-treatment is set at its maximum value).
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In contrast, the following example shows that there exist cases where the aggregate marginal
comparison is incompatible with a fully congruent comparison of means of sub-treatments.

Example 2.1 (continued). Suppose that

P
(
(1, 0, 0)

∣∣∣D = 1
)
= 0.8 P

(
(1, 1, 0)

∣∣∣D = 2
)
= 0.1

P
(
(0, 1, 0)

∣∣∣D = 1
)
= 0.1 P

(
(1, 0, 1)

∣∣∣D = 2
)
= 0.1

P
(
(0, 0, 1)

∣∣∣D = 1
)
= 0.1 P

(
(0, 1, 1)

∣∣∣D = 2
)
= 0.8

In this case, there do not exist fully congruent weights that can rationalize the E[Y |D = 2]−E[Y |D =

1]. The explanation is that the incongruent sub-treatment vectors (1, 0, 0) and (0, 1, 1) occur too
commonly for E[Y |D = 2] − E[Y |D = 1] to be rationalized with only fully congruent comparisons
across sub-treatment vectors.

In the remainder of this section, we provide four arguments aiming to characterize empirical
settings where the aggregate marginal effect, E[Y |D = d] − E[Y |D = d − 1], would be less likely
to put weight on incongruent causal effects. These can be used by practitioners to diagnose, both
conceptually and practically, how much of a problem an aggregated treatment may cause in a given
application. First, in Section 3.4.1, we show that the number of possible incongruent comparisons
grows much more rapidly than the number of possible congruent comparisons as the complexity
of the sub-treatments increases. Second, in Section 3.4.2, we provide auxiliary assumptions that
guarantee a weighting scheme that does not put any weight on incongruent comparisons. Third,
in Section 3.4.3, we discuss the characteristics of applications that must put weight on incongruent
comparisons. Lastly, in Section 3.4.4 we provide a test for whether D is appropriately aggregated—
i.e., whether a version of Assumption 1 for the aggregated treatment is valid, in which case there
would be no aggregation issues.

3.4.1 The Link between the Number of Sub-treatments and Incongruent Comparisons

In this section, we establish a link between the complexity of the sub-treatments (i.e., the number
of distinct sub-treatments and the number of values that the sub-treatments can take) and the
number of incongruent MATT− parameters that show up in the decomposition in Theorem 3.1
relative to the number of congruent MATT+ parameters. We show that the number of incongruent
terms grows much more rapidly than the number of congruent terms. The implication for empirical
work is that, all else equal, applications with more sub-treatments or complicated sub-treatments
are more susceptible to the issues related to incongruent comparisons showing up in the aggregate
marginal effects that we discussed above.

Suppose that all sub-treatments are binary (i.e., individuals can either participate or not in any
of K binary versions of the treatment). In Proposition C.5 of Appendix C, we establish that |M|,
the total number of contrasts for all permutations of sub-treatment vectors at adjacent amounts of
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Figure 1: Proportions of Congruent and Incongruent Sub-treatment Vectors

(a) Binary Sub-treatments (b) Multivalued Sub-treatments

Notes: The figure provides the relative proportion of congruent and incongruent sub-treatment vectors as a
function of the number of sub-treatments, K. Panel (a) considers the case where all of the sub-treatments
are binary. Panel (b) considers the case where the sub-treatments are discrete with three possible values
{0, 1, 2}.

aggregated treatment, is equal to
(

2K
K−1

)
.13 This number dramatically increases in K. For example,

if K = 3, then there are
(
6
2

)
= 15 possible contrasts. If K = 4, there are

(
8
3

)
= 56 contrasts and so

on. In addition, Proposition C.5 reveals that the amount of congruent contrasts |M+| = K · 2K−1

and incongruent contrasts |M−| =
(
2K
K

)
− K · 2K−1, allowing us to formally show that the total

number of incongruent pairs of sub-treatment vectors grows much more rapidly with K than the
total number of congruent pairs of sub-treatment vectors (see Corollary C.1 in Appendix C). The
relatively rapid growth of the number of incongruent comparisons is illustrated in Figure 1.

Figure 1 shows the fraction of congruent and incongruent comparisons of sub-treatment vectors
for a given number of sub-treatments. Panel (a) presents this in the setting with binary sub-
treatments. More than half of the sub-treatment vectors are incongruent for any K > 4, and the
fraction of incongruent sub-treatment vectors grows rapidly with K. Panel (b) considers the case
where the sub-treatments can be multivalued—in this panel, all of the sub-treatments can take
values among {0, 1, 2}. In this case, the number of incongruent contrasts dominates the number of
congruent contrasts for any value of K > 2, and the relative fraction of incongruent contrasts grows
even faster with K compared to the case when sub-treatments are binary. See Proposition C.6 in
Appendix C for exact expressions of the number of congruent and incongruent marginal contrasts in

13Formally define the set of all marginal pairs of sub-treatment vectors as M := ∪N̄
d=1M(d). Likewise, define the

marginally congruent set of pairs M+ := ∪N̄
d=1M+(d) and marginally incongruent set of pairs M− := ∪N̄

d=1M−(d).
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this case. Figure 1 and Corollary C.1 suggest that the relative fraction of incongruent comparisons
grows rapidly with the support of sub-treatments.

Having more sub-treatments does not necessarily mean that E[Y |D = d] − E[Y |D = d − 1]

includes comparisons between incongruent sub-treatment vectors. What we have established in this
section is that the scope for incongruency increases with the number of sub-treatments and with
larger support size among the sub-treatments, suggesting that a researcher should pay especially
close attention to issues related to incongruency in settings with a large number of sub-treatments,
or few sub-treatments possessing multivalued supports.

3.4.2 Auxiliary Assumptions that Rule Out Incongruent Comparisons

This section lists auxiliary assumptions that rule out incongruency affecting the aggregate marginal
effect, E[Y |D = d]−E[Y |D = d− 1]. The first assumption rules out treatment effect heterogeneity
across sub-treatments. The second set of assumptions rules out units sorting across different values
of the aggregated treatment and introduces a restriction on latent unit-types.

Approach 1: Restrictions On Treatment Effect Heterogeneity

The first assumption we consider rules out treatment effect heterogeneity with respect to a marginal
increase in any of the sub-treatments.

Assumption 3 (No Heterogeneous Sub-treatment Effects). For all d ∈ D>0 and any (sd, sd−1) ∈
M+(d),

MATT+(sd, sd−1) = βd

Assumption 3 says that the average marginal causal effect of any sub-treatment is constant
across sub-treatments between adjacent levels of aggregated treatment.14 In many applications,
this may be a strong auxiliary assumption. For example, in our running example, it would say
that the causal effect of a one-unit increase in any of the sub-treatments (whether it be homework,
music, or sports) is the same for all sub-treatments. Most likely, this is a strong assumption in this
context.

In Proposition C.7 in Appendix C, we show that, under Assumptions 1-3,

E[Y |D = d]− E[Y |D = d− 1] = βd

In other words, the aggregate marginal effect recovers the average marginal causal effect of the
sub-treatments, which is βd. The intuition for this result comes from the second part of Proposition
3.2: under Assumption 3, all the MATT+’s are equal to each other, and Proposition 3.2 therefore
implies that all of the MATT−’s are also equal to βd. Replacing all of the MATT+’s and MATT−’s
in Theorem 3.1 then implies the result. Thus, in some sense, Assumption 3 does not remove the

14A similar assumption has been referred to in the Epidemiology literature as “treatment variation irrelevance”.
See, for instance, VanderWeele and Hernán (2013).
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weights on the MATT−(sd, sd−1) terms in Theorem 3.1, but it does make them irrelevant as all of
them are equal to βd. Equivalently, we can view Assumption 3 as setting all SATT′s to zero (which
can be seen from Proposition 3.2): intuitively, when one sub-treatment is substituted by another,
there is no effect on the outcome.

Approach 2: Structural Assumptions

An alternative approach to ruling out incongruity in the decomposition in Theorem 3.1 comes from
introducing structural assumptions. Let Si(d) denote the sub-treatment that unit i would experience
under aggregated treatment d.15 Thus, Si(d) := (Si(1), Si(2), . . . , Si(N̄)) defines a unit-level latent
aggregated treatment path—the particular sub-treatment vector that a unit would experience for
all possible values of the aggregated treatment. The set of possible values of S(d) is finite, and we
can define a notion of a unit’s latent type on the basis of S(d).

Assumption 4 (No Sorting on D). Latent types are independent of the aggregated treatment; that
is,

S(d) ⊥⊥ D

Assumption 5 (No Incongruent Latent Types). For all d ∈ D>0, treatment paths are locally
congruent; that is,

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)
= 0, if (sd, sd−1) ∈ M−(d)

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)
≥ 0, if (sd, sd−1) ∈ M+(d)

Assumption 4 says that latent types are balanced across aggregate amounts of treatment. This
ensures that there is no selection at the disaggregate level based on the total amount of treatment.
No sorting holds under random assignment of the sub-treatments.

Assumption 5 imposes an explicit restriction on the latent types in the population—that there
are no units in a latent type that “behaves” incongruently. In our running example, it rules out
types of units that would spend one hour of enrichment doing homework, but had they done two
hours of enrichment, they would have done music lessons and sports.

We show in Proposition C.8 in Appendix C that these two conditions are sufficient to guarantee
that there exists a weighting scheme satisfying the conditions in Theorem 3.1 that puts no weight
on any MATT−(sd, sd−1).

Example 2.1 (continued). It is worth pointing out why Assumption 5 alone is not sufficient
to guarantee that the aggregate marginal effect can be decomposed entirely in terms of congruent
MATT+’s. Consider an extreme version of our running example, where there are two latent types:

15The object Si(d) should be understood as a latent sub-treatment type across D, which describes how the com-
ponents of treatment are arranged at each total treatment level in observational settings. Recall that aggregated
treatment variables are deterministic functions of the sub-treatments, devised ex post, and are not causal on the
outcome. This indicates that types are inseparable from the aggregation function that underlies them. Hence, the
concept of type is an artifact of the aggregation scheme, not itself an intervention with its own causal effect.
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type 1 would do homework if they did one hour of enrichment and would do homework and music
lessons if they did two hours of enrichment; type 2 would play sports if they did one hour of en-
richment and would do music lessons and play sports if they did two hours of enrichment. Both
latent types are congruent. However, suppose there is sorting so that all type 1 units do one hour of
enrichment, while all type 2 units do two hours of enrichment. In this case, the aggregate marginal
effect E[Y |D = 2] − E[Y |D = 1] is fully incongruent due to sorting, despite all units themselves
belonging to a congruent latent type.

3.4.3 Settings where Incongruent Comparisons Are Unavoidable

In the previous section, we discussed additional assumptions that side-step incongruent MATT−’s
complicating the interpretation of the aggregate marginal effect. This section pivots to characteriz-
ing the features of applications that necessarily include incongruent MATT−’s.

Sub-treatment Decreases in Aggregated Treatment Guarantees Incongruency

The following result provides a straightforward characteristic of an application that indicates that
incongruency is unavoidable in the aggregate marginal effect.

Proposition 3.3. Provided there exists some sub-treatment indexed by k ∈ {1, . . . ,K}, and some
d ∈ D>0, such that

E[Sk|D = d] < E[Sk|D = d− 1]

then any weights that satisfy the properties in Theorem 3.1 must assign positive weight to at least
one incongruent pair of sub-treatments, (sd, sd−1) ∈ M−(d).

Proposition 3.3 states that if the conditional means of any sub-treatment declines between values
of aggregated treatment D = d − 1 and D = d, then weighting schemes that avoid incongruency
are impossible. The condition in the proposition is easy to consider in applications as it concerns
the mean of a particular sub-treatment across different values of the aggregated treatment. In the
context of our application, the proposition says that incongruent comparisons cannot be avoided if,
for example, the mean number of hours spent on homework was 0.75 among children that did one
hour of enrichment while the mean number of hours spent on homework was 0.5 among children
that did two hours of enrichment. This is an intuitive condition for guaranteeing incongruency: if
the mean of some sub-treatment decreases in D, then there is simply not enough available mass
on congruent sub-treatment vectors at the higher value of the aggregated treatment to satisfy the
requirements on the weights in Theorem 3.1.

Minimally Incongruent Weights

The condition in Proposition 3.3 is a sufficient, but not necessary, condition for incongruency.
Moreover, if it holds, it implies that incongruency is a problem, but it does not necessarily provide
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much information about how much of a problem it is. With this in mind, in this section we define
minimally incongruent weights as a solution to the following linear programming problem:

w⋆ ∈ arg min
w

∑
(sd,sd−1)∈M−(d)

w(sd, sd−1) (3)

subject to w(sd, sd−1) ≥ 0 for all (sd, sd−1) ∈ M(d)∑
(sd,sd−1)∈M(d)

w(sd, sd−1) = 1

∑
sd

w(sd, sd−1) = P(S = sd−1|D = d− 1)∑
sd−1

w(sd, sd−1) = P(S = sd|D = d)

This defines the weights w⋆ to be a weighting scheme that minimizes the weight on incongruent
comparisons between marginal sub-treatment vectors subject to satisfying the criteria for the weights
discussed in Theorem 3.1. There are several additional clarifications worth mentioning. First, if
w⋆(sd, sd−1) > 0 for any (sd, sd−1) ∈ M−(d), it necessarily implies that the marginal comparison
of aggregate means includes incongruent comparisons across sub-treatment vectors. Second, if
w⋆(sd, sd−1) = 0 for all (sd, sd−1) ∈ M−(d), then the marginal comparison of aggregate means has
a representation that only includes congruent comparisons across sub-treatment vectors. However,
in general, there can be many weighting schemes that meet these criteria and involve congruent
comparisons across sub-treatments; for instance, in the earlier example with uniform probabilities
of each sub-treatment vector on page 16, there are many weighting schemes that only involve
congruent comparisons across sub-treatment vectors.

3.4.4 Testing Whether D is Too Aggregated

Next, we show that one can test whether the version of Assumption 1 relative to D holds. If it does,
then the aggregation issues discussed in this paper are not relevant for the empirical application,
and the researcher may use D as their treatment variable without having to use the methods
developed in this paper. The second part of SUTVA is often considered to be untestable (see, for
example, the discussion in Hernán (2016)); in this section, we highlight that it is jointly testable
with Assumptions 1 and 2 in settings where the researcher observes sub-treatment S. We note that
an analogous argument to the one below could be used to test Assumption 1 per se (i.e., the version
of that assumption relative to S) provided the researcher also observes a more disaggregated version
of sub-treatment S̃. See Appendix A for further details.

The version of Assumption 1 relative to D holds if, for all d ∈ D, Yi(sd) = Yi(s
′
d) for all i and

sd, s
′
d ∈ Sd. Our test will be based on the comparison of means across different sub-treatment vectors

corresponding to the same aggregate value of the treatment. If SUTVA holds for the aggregated
treatment D, we have that, for any sd, s

′
d ∈ Sd,

E[Y |S = sd]− E[Y |S = s′d] = E[Y (sd)|S = sd]− E[Y (s′d)|S = s′d]
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= E[Y (sd)− Y (s′d)|S = sd]︸ ︷︷ ︸
SUTVA

+E[Y (s′d)|S = sd]− E[Y (s′d)|S = s′d]︸ ︷︷ ︸
selection bias

,

where the first equality holds by Assumption 1 relative to S, and the second equality holds by adding
and subtracting E[Y (s′d)|S = sd]. The first underlined term in the second line is equal to 0 when
there are no hidden versions of the aggregated treatment (i.e., under Assumption 1 relative to D),
but the second term could still be non-zero—the mean of the potential outcomes of sub-treatment
vector s′d could be different for sub-treatment group sd relative to sub-treatment group s′d, even if
these are not distinct versions of the treatment. For example, “homework” and “music” could be
equivalent versions of the treatment, and yet the latter term could be non-zero if, for some reason
related to selection, children who do homework tend to have higher or lower outcomes than children
who do music.

However, the underlined selection bias term is equal to zero under Assumption 2. This implies
that the version of Assumption 1 relative to D is testable under the maintained Assumptions 1 and 2.
One can carry out the test proposed here by simple tests for differences in means between all pairs of
sub-treatments corresponding to the same aggregate level of the treatment, adjusting for multiple
testing error.16 We also note that related ideas could be used under alternative identification
strategies that rely on different assumptions than Assumption 2.

3.4.5 Discussion

This section has aimed to highlight the features of applications where the incongruent comparisons
that show up in the decomposition in Theorem 3.1 arise. First, we showed that the relative number of
incongruent MATT−’s grows rapidly in the complexity of the sub-treatments. Second, we discussed
additional assumptions (limitations on treatment effect heterogeneity and restrictions on sorting
and latent types) that rule out incongruent MATT−’s in the aggregate marginal effect. Third, we
provided conditions (a sub-treatment that decreases in the aggregated treatment) that guaranteed
that incongruent MATT−’s would show up in the aggregate marginal effect. Fourth, we showed
how to test whether there should be any aggregation issues by testing the version of Assumption 1
relative to D.

To conclude this section, it is worth emphasizing that these four arguments provide comple-
mentary ways for a researcher to informally assess “how much” aggregation matters in a particular
application. For example, in an application with a small number of uncomplicated sub-treatments,
where the sub-treatments are similar to each other and likely to have close to homogeneous effects,
and where the version of Assumption 1 relative to D is not rejected, one should expect the negative
implications of working with an aggregated treatment to be small. In contrast, an application with
a large number of more-distinct sub-treatments, heavy sorting across different values of the aggre-
gated treatment, and where the version of Assumption 1 relative to D is rejected, is one in which
we should expect major distortions to arise due to the aggregation of the treatment.

16See Hasegawa, Deshpande, Small, and Rosenbaum (2020) for simultaneous inference with two versions of treat-
ment in the binary treatment case, which does not require correcting for multiple testing.
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4 Alternative Approaches

In the preceding section, we saw that interpreting aggregate marginal effects encountered several
complications, arising from two key issues: (i) comparisons across values of the aggregated treatment
could mix marginal effects of congruent sub-treatment vectors and marginal effects of incongruent
sub-treatment vectors, and (ii) marginal effects of incongruent sub-treatment vectors are difficult to
interpret. We then outlined some ways that a researcher could diagnose (or at least think about) the
implications of incongruency with an aggregated treatment in a given application. In this section, we
consider two alternative approaches that can completely side-step the issues related to incongruency
that were emphasized above. First, in Section 4.1, we consider alternative, non-marginal causal effect
parameters. Targeting these parameters fully circumvents issues related to incongruency. They are
straightforward to interpret and are estimable when only the aggregated treatment is observed (i.e.,
they do not require the sub-treatments themselves to be observed). Because this approach does not
require the sub-treatments to be observed, this approach offers a path forward to conduct causal
inference even in applications that require a very disaggregated notion of the sub-treatments to
satisfy Assumption 1. Moreover, the non-marginal comparisons that we consider in that section
immediately apply for any aggregation function, not just the sum of the sub-treatments. Changing
the target parameter means that it is no longer interpretable as a marginal causal effect parameter,
which is a drawback for applications where a researcher strongly prefers this type of parameter.
Second, in Section 4.2, we show how to identify fully congruent marginal causal effect parameters
in applications where sub-treatment data is available. This approach delivers a marginal causal
effect parameter, but it requires Assumption 1 to hold for the observed sub-treatments and is more
sensitive to the specific aggregation function specified by the researcher.

4.1 Approach 1: Target Non-marginal Causal Effect Parameters

Marginal effects have a strong claim on being the most natural target parameters in the setting
that we are considering, where the aggregated treatment can take multiple values, and reflect the
most common ways that empirical work interprets results in these settings. However, the previous
section documented several challenges with interpreting aggregate marginal effects in the presence
of sub-treatments. Instead of considering marginal changes in the aggregated treatment, in this
section, we focus on interpreting E[Y |D = d]−E[Y |D = 0] for any d ∈ D>0, which is the difference
between the means of outcomes for the group that experiences aggregated treatment d relative
to the untreated group. We show that this non-marginal, aggregate comparison does not include
incongruent comparisons across sub-treatments. We further show that, under Assumption 2, this
comparison has a causal interpretation as the average of the causal effects of each sub-treatment
sd ∈ Sd relative to being untreated. Importantly, sub-treatments in this case do not need to be
observed by the researcher. We refer to this as a baseline-to-d comparison in the text below.

In terms of causal effect parameters, the main building block parameter in this section is the
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average treatment effect on the treated (ATT)

ATT(sd) := E[Y (sd)− Y (0)|S = sd]

which is defined with respect to a given sub-treatment sd and where Y (0) is shorthand notation for
being untreated (i.e., where all sub-treatments are equal to zero). ATT(sd) is the average effect of
experiencing sub-treatment vector sd relative to being untreated among sub-treatment group sd. In
the spirit of using the aggregated treatment to summarize the causal effects of the sub-treatments,
our main target parameter in this section is

AATT(d) := E
[
ATT(S)

∣∣D = d
]

which is the aggregate average treatment effect on the treated across sub-treatments corresponding
to the aggregated treatment being equal to d. From the law of iterated expectations, it follows that

AATT(d) =
∑
sd∈Sd

P(S = sd|D = d) · ATT(sd) (4)

i.e., that AATT(d) is a weighted average of the underlying ATT’s of specific sub-treatments, with
weights given by the relative frequency of that sub-treatment among all sub-treatments that aggre-
gate to d.

In some applications, it is also useful to scale ATT(sd), or AATT(d), by the amount of the
aggregated treatment, i.e., to consider the parameters

ATT(sd)

d
or

AATT(d)

d

which can be interpreted as average treatment effects per unit of the (sub)-treatment. We refer to
these as scaled ATT’s and scaled AATT’s, respectively.

Identification

Next, we provide identification results for the average treatment effect parameters discussed above.

Theorem 4.1. Under Assumptions 1 and 2, for d ∈ D>0 and sd ∈ Sd,

ATT(sd) = E[Y |S = sd]− E[Y |S = 0K ] and AATT(d) = E[Y |D = d]− E[Y |D = 0]

where 0K denotes the zero vector of length K. ATT(sd) is identified if the sub-treatments are
observed. AATT(d) is identified whether or not the sub-treatments are observed.

Theorem 4.1 shows that AATT(d) is identified under Assumptions 1 and 2, even if the researcher
only observes the aggregated treatment (and not the sub-treatments). It is interesting to compare
this result with the one in Theorem 3.1 above concerning the comparison of means of outcomes
for marginal increases in the aggregated treatment (i.e., E[Y |D = d] − E[Y |D = d − 1]). A major
issue for the marginal comparison emphasized in Section 3 was the non-uniqueness of the weights

25



and the possibility of incongruency. Neither of those issues apply for the baseline-to-d comparisons,
E[Y |D = d]−E[Y |D = 0], considered here. The “weights” on the underlying sub-treatment-specific
ATT(sd) parameters are given in Equation (4). These are unique, positive for all relevant sub-
treatments, and intuitive—they correspond to the relative frequency of each relevant sub-treatment.
Mechanically, the same sort of double-sum arguments can be used here as in the previous case, but,
by construction, S0 only has one element, which results in the implicit weighting scheme being
unique in this case. The benefit is that, unlike for the marginal case, E[Y |D = d]− E[Y |D = 0] is
straightforward to interpret, and all of the issues related to incongruency emphasized above can be
avoided.17

Interpreting Regressions with Scaled Baseline-to-d Building Blocks

Next, we return to interpreting the coefficient on the aggregated treatment variable in the regression
from Equation (1), but we relate it to the scaled baseline-to-d building blocks: (E[Y |D = d] −
E[Y |D = 0])/d. In Proposition SA.1 in the Supplementary Appendix (Caetano, Caetano, Callaway,
and Dyal, 2025), we show that

α1 =
N̄∑
d=1

ω̃reg(d) · E[Y |D = d]− E[Y |D = 0]

d

where
ω̃reg(d) =

d · (d− E[D])

Var(D)
· P(D = d)

and satisfies the following properties: (i)
N̄∑
d=1

ω̃reg(d) = 1 and (ii) ω̃reg(d) ≶ 0 for d ≶ E[D].18

The expression for α1 above can be combined with the result in Theorem 4.1 to say that the
regression coefficient on the aggregated treatment can be interpreted as a weighted average of scaled
AATT(d) parameters. Relative to the regression weights discussed above for the marginal case, the
regression weights with scaled baseline-to-d primitives have worse properties. The weights are
negative for values of the aggregated treatment below E[D], implying that α1 is not weakly causal
when scaled AATT(d)’s are the underlying building block parameters. In addition, the weights
are systematically increasing in magnitude in their distance from E[D], meaning that effects for
sub-treatment groups with more extreme values of the aggregated treatment D “count more” than
effects for other sub-treatment groups.

17Both Theorem 3.1 and Theorem 4.1 invoked Assumption 2. In both cases, this assumption is stronger than
necessary, though the minimal assumptions to provide a causal interpretation in each result are non-nested. Causal
interpretations of marginal effects of sub-treatments can hold under a local version of no selection, while causal
interpretations of AATT(d) can be rationalized under a version of the no-selection assumption that involves untreated
potential outcomes only. This could be a meaningful difference in some applications (though it is not relevant for
any of our discussions about aggregation specifically). We discuss these differences in more detail in Appendix B.1.

18The proof uses the same mechanics as Theorem S3 in the Supplementary Appendix of de Chaisemartin and
D’Haultfoeuille (2020), though the context of that result (interpreting two-way fixed effects regressions) is very
different from ours.
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The discussion above highlights a certain tension with interpreting α1 in terms of baseline-to-d
causal effects. While the building blocks (E[Y |D = d] − E[Y |D = 0])/d are more interpretable
than the marginal effects discussed previously, the weights inherited from the regression have poor
properties. Thus, in settings where a researcher would like to report a single, scalar summary of
the causal effects of the sub-treatments, a natural alternative to reporting α1 is to report either

E
[
AATT(D)

∣∣D > 0
]

or E
[
AATT(D)

D

∣∣∣∣D > 0

]
which are all identified under the same conditions that would give α1 a causal interpretation, but
do not suffer from the poor weighting scheme stemming from the regression.

Remark 4.1 (Linearity and Homogeneity). Consider the case where, for all d ∈ D>0 and sd ∈ Sd,
ATT(sd) = θ × d, so that the average treatment effects of all sub-treatments are (i) constant across
sub-treatments corresponding to the same aggregate amount of the treatment and (ii) linear in d. (i)
and (ii) restrict treatment effect heterogeneity across sub-treatments and impose a linearity condition.
In this case, E

[
AATT(D)

D

∣∣∣D > 0
]
= θ, and, in addition, it also follows that α1 = θ. In other words,

in this case, the regression would deliver the unique scaled treatment effect parameter. In practice,
both (i) and (ii) are likely to be strong auxiliary assumptions for most applications. This suggests it
is a better strategy to directly target parameters such as E

[
AATT(D)

D

∣∣∣D > 0
]

rather than hoping that
the regression will deliver them.

4.2 Approach 2: Target Marginal Effect Parameters with Sub-treatment Data

In this section, we target summary marginal causal effect parameters, exploiting that the sub-
treatments are observed, which only applies for some applications. To start with, recall that, under
Assumptions 1 and 2,

MATT+(sd, sd−1) = E[Y |S = sd]− E[Y |S = sd−1], (sd, sd−1) ∈ M+(d).

Therefore, when the sub-treatments are observed, MATT+(sd, sd−1) is identified (see Proposition
C.1 in Appendix C). Given that this marginal effect is defined at the sub-treatment level, none of
the issues related to incongruency that we emphasized above in the context of aggregation apply.
In practice, a researcher could estimate and report MATT+(sd, sd−1) for any (or all) combinations
of congruent sub-treatment vectors. Leaving the discussion here, however, would not fully address
some relevant empirical challenges—presumably, in the majority of applications where the sub-
treatments are observed, the entire reason to introduce an aggregated treatment variable is that
there tend to be few observations that experienced each specific combination of sub-treatments.
This implies that the sort of non-parametric analysis mentioned above would suffer from a form of
curse of dimensionality, resulting in each MATT+(sd, sd−1) being estimated imprecisely and in poor
performance of inference procedures for the MATT+’s.

In contrast, however, even when the number of observations per combination of sub-treatments
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is small, one may still be able to estimate averages of MATT+’s well. A natural option is

˜AMATT+(d) :=
∑

(sd,sd−1)∈M+(d)

w̃+(sd, sd−1) ·MATT+(sd, sd−1) (5)

where, for (sd, sd−1) ∈ M+(d),

w̃+(sd, sd−1) :=
P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)∑

(s′d,s
′
d−1)∈M+(d)

P
(
S(d) = s′d, S(d− 1) = s′d−1

∣∣D ∈ {d, d− 1}
) . (6)

˜AMATT+(d) is a special case of AMATT+
w+(d) in Equation (2) above, as it is a specific weighted av-

erage of congruent MATT+’s. The weights come from the joint distribution of latent sub-treatment
types local to the aggregated treatment either being d or d − 1. These weights give ˜AMATT+(d)

a clear interpretation as a marginal “on-the-treated” type of parameter as it depends on the dis-
tribution of the sub-treatments that are (or would be) experienced. The term in the denominator
of the expression for w̃+(sd, sd−1) can be thought of as normalizing the weights on congruent sub-

treatments so that they sum to one.19 Recovering ˜AMATT+(d), however, introduces additional
challenges relative to identifying MATT’s: even if the sub-treatments are observed, the weights
depend on the joint distribution of latent sub-treatment types for aggregated treatment D = d or
D = d − 1 and, therefore, require additional assumptions to identify. We discuss these issues in
more detail in Appendix B.3; however, in order to avoid introducing additional assumptions, we
instead focus on identifying a version of AMATT+

w+(d) with researcher-chosen weights, sacrificing
some interpretability but increasing tractability. A leading option for researcher-chosen weights is
to use the normalized product weights, i.e.,

ν+(sd, sd−1) :=
P(S = sd | D = d) · P(S = sd−1 | D = d− 1)∑

(s′d,s
′
d−1)∈M+(d)

P(S = s′d | D = d) · P(S = s′d−1 | D = d− 1)
,

for (sd, sd−1) ∈ M+(d), and then to consider

AMATT+(d) :=
∑

(sd,sd−1) ∈ M+(d)

ν+(sd, sd−1) ·MATT+(sd, sd−1). (7)

Using this weighting scheme results in putting more weight on common sub-treatments. An imme-
diate implication of Assumptions 1 and 2 and observing the sub-treatments (see Proposition C.1)
is that AMATT+

w+(d) in Equation (2) is identified; this also implies that AMATT+(d) is identified
under the same conditions.

In settings where a researcher would like a scalar summary of the marginal causal effects of the
19In settings where units would make congruent sub-treatment choices at different amounts of the aggregated

treatment (i.e., if Assumption 5 holds), then the expression in the denominator is equal to one, and the weights do
not need to be normalized. Alternatively, one can view the normalization as arising due to dropping incongruent
MATT’s.
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treatment, a natural target parameter is

AMATT+ := E
[
AMATT+(D)

∣∣D > 0
]

which is an average marginal (weakly) causal effect parameter that comes from averaging AMATT+(d)

over the distribution of the aggregated treatment variable D. It is identified under Assumptions 1
and 2 when the sub-treatments are observed.

5 Empirical Application

In this section, guided by our results above, we illustrate the aggregation issues and the methods
proposed above with data from Caetano, Caetano, and Nielsen (2024), which studies the effects
of enrichment activities on noncognitive skills among children in the U.S. Like that paper, we use
data from the Childhood Development Supplement (CDS) provided by the Panel Study of Income
Dynamics (PSID) that contains time-use diaries and measures of cognitive and noncognitive skills.
For clarity, we make some simplifications. Our estimates come from simple comparisons of means;
we ignore control variables and fixed effects in our analysis, and we abstract from the bunching
identification strategy that is often used in this literature. Instead of trying to make a causal
empirical claim, in this section, we only aim to highlight the issues that stem from aggregating
sub-treatment variables; and, as discussed above, these issues continue to apply whether or not
Assumption 2 holds.

The aggregated treatment variable in our application is total hours of enrichment activity, which
is an aggregation of four sub-treatments: Lessons, Structured Sports, Volunteering, and Before &
After School Programs. Each sub-treatment represents the average number of hours per week that
the child spent on that specific activity, and the sub-treatment vector represents the bundle of sub-
treatments each child was exposed to. In our data, we observe each child’s participation in each
sub-treatment. We round the sub-treatments to their nearest half-hour. We then sum across all
four sub-treatments for each individual so that the aggregate variable D = (S1+S2+S3+S4) is the
total amount of enrichment activities. The outcome of interest is noncognitive skill, a normalized
index of socio-emotional and behavioral ratings with mean zero and standard deviation of one.
Larger values indicate better noncognitive scores. We follow Caetano, Caetano, and Nielsen (2024)
in constructing this variable; see that paper for more details. See Supplementary Appendix SB.1
for summary statistics and more details on how we constructed the data used in our application
(Caetano, Caetano, Callaway, and Dyal, 2025). In the main text, to simplify the discussion, we
focus on a subsample of low socio-economic status children in 2019.20 In Supplementary Appendix
SB.2 (Caetano, Caetano, Callaway, and Dyal, 2025), we provide the results for the full sample used
in Caetano, Caetano, and Nielsen (2024).

Observing the sub-treatments is important for our analysis. Below, we often temporarily ignore
20We opted for illustrating the analysis in this smaller subsample because it has sufficiently few different sub-

treatment values, allowing us to report Table 1 in the paper.
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Figure 2: Average Amount of Sub-treatments across Each Level of Aggregated Treatment

Notes: The figure displays the average amount of each sub-treatment as a function of the total amount of
treatment, D.

that we observe the sub-treatments and act as if we only had access to the aggregated treatment.
Then, exploiting the fact that we actually do observe the sub-treatments, we are able to diagnose
how much aggregation itself affects the results. It is also worth mentioning that, although the
decompositions that we discussed in previous sections were written in terms of population quantities,
the same arguments can be applied to their sample analogues. We also report standard errors below,
but we mainly emphasize the point estimates—because the sample, sub-treatments, and outcomes
are the same across estimators, differences in results reflect real differences in the estimands rather
than noise. As such, statistical significance is not the primary lens through which to assess these
differences; instead, differences in the point estimates themselves reflect how much varying the
estimands matters in practice.

5.1 Sub-treatment Diagnostics

We begin by examining evidence of incongruency across different values of the aggregated treat-
ment. Specifically, we investigate how the composition of sub-treatments varies with the level of
total enrichment, recalling from Proposition 3.3 that a sub-treatment whose mean declines in the
aggregated treatment implies the presence of incongruency.

Figure 2 displays the mean of each sub-treatment across every level of the aggregated treatment
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D. The plot shows the mean number of hours for each type of enrichment activity (each sub-
treatment) as the total hours of enrichment activity increases. The 45-degree line represents, for
each value D in the horizontal axis, the vertical sum of hours across all sub-treatments, which
naturally equals the total number of hours spent on enrichment, D. For example, at D = 0.5, the
average amount of hours spent on lessons is 0.5, which is 100% of the total enrichment for that
value of D. At D = 1, we observe that the average number of hours for lessons increases relative to
D = 0.5, but this sub-treatment is no longer the only sub-treatment that is experienced at D = 1.

More interestingly, the mean for the lessons sub-treatment declines from D = 1 to D = 1.5.
From Proposition 3.3, this is evidence of incongruency, implying that the aggregate marginal effect
at D = 1.5 cannot avoid putting weight on incongruent marginal sub-treatment effects. Notice that
these violations continue for marginal increases from D = 1.5 to D = 2.0 for lessons; from D = 2.0

to D = 2.5 for both sports and volunteering sub-treatments; and from D = 2.5 to D = 3.0 for all
sub-treatments except lessons. This suggests that aggregate marginal effects (including regressions
interpreted as marginal effects) are hard to interpret—as discussed above, the incongruent MATT−

terms that will show up here include hard-to-interpret substitution effects or, equivalently, congruent
MATT+’s with negative weights.

Although the sub-treatment plot can tell us where weight on incongruent comparisons is in-
escapable, it does not explain how much incongruity there is. To answer this question, we next find
the minimally incongruent weights by solving the linear program in Section 3.4.3. These weights
provide an interpretation of the aggregate marginal effect with minimal incongruity. The results
from solving the problem are displayed in Table 1, which lists all marginal pairs of sub-treatment
vectors at each D = d from the data. In line with the results from Figure 2, the minimally incon-
gruent weights put weight on incongruent marginal sub-treatment effects for the aggregate marginal
effects at D = 1.5, 2.0, 2.5, and 3.0. Moreover, for D = 1.5, 2.0, and 2.5, the weight on incongruent
marginal sub-treatment effects is substantial, ranging from 30-40% of the total weight. Even more
strikingly, all of the weight falls on incongruent comparisons between D = 2.5 and D = 3.0 because
there are no available congruent sub-treatment vectors.

5.2 Regression and Target Parameter Estimation

Next, we move to estimating the effects of enrichment activities, comparing the different approaches
that we have discussed throughout the paper. Table 2 reports estimates of several scalar parameters
summarizing the effects of enrichment activities on a child’s noncognitive skills. All estimates in
Table 2 come from plug-in estimators of the target parameters considered in the paper. Each
estimate is in terms of the number of standard deviations away from the mean noncognitive skill
score (zero).
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Table 1: Minimally Incongruent Weights

sd sd−1 ∈ M−(d) δ(sd, sd−1) w⋆(sd, sd−1) Incongruent Wt. (%)

D=0.5
0.5, 0.0, 0.0, 0.0 0.0, 0.0, 0.0, 0.0 −0.219 1.000 0.00%

D=1.0
0.5, 0.0, 0.0, 0.5 0.5, 0.0, 0.0, 0.0 0.388 0.067
0.5, 0.0, 0.5, 0.0 0.5, 0.0, 0.0, 0.0 −0.227 0.267
1.0, 0.0, 0.0, 0.0 0.5, 0.0, 0.0, 0.0 −0.018 0.667 0.00%

D=1.5
0.0, 0.0, 0.0, 1.5 0.5, 0.0, 0.0, 0.5 × 0.085 0.004
0.5, 0.0, 0.0, 1.0 0.5, 0.0, 0.0, 0.5 0.340 0.063
0.0, 0.0, 0.0, 1.5 0.5, 0.0, 0.5, 0.0 × 0.701 0.017
0.5, 0.0, 1.0, 0.0 0.5, 0.0, 0.5, 0.0 −0.000 0.188
0.5, 0.5, 0.5, 0.0 0.5, 0.0, 0.5, 0.0 0.752 0.063
0.0, 0.0, 0.0, 1.5 1.0, 0.0, 0.0, 0.0 × 0.491 0.104
0.0, 0.0, 1.5, 0.0 1.0, 0.0, 0.0, 0.0 × 0.236 0.188
0.0, 1.5, 0.0, 0.0 1.0, 0.0, 0.0, 0.0 × 0.030 0.063
1.5, 0.0, 0.0, 0.0 1.0, 0.0, 0.0, 0.0 0.061 0.313 37.51%

D=2.0
0.0, 0.0, 0.0, 2.0 0.0, 0.0, 0.0, 1.5 −0.170 0.125
0.0, 0.0, 2.0, 0.0 0.0, 0.0, 1.5, 0.0 −0.022 0.075
0.5, 0.0, 1.5, 0.0 0.0, 0.0, 1.5, 0.0 −0.141 0.113
0.0, 2.0, 0.0, 0.0 0.0, 1.5, 0.0, 0.0 −0.104 0.063
0.0, 0.0, 2.0, 0.0 0.5, 0.0, 0.0, 1.0 × −0.532 0.025
0.0, 2.0, 0.0, 0.0 0.5, 0.0, 0.0, 1.0 × −0.820 0.038
0.5, 0.0, 1.5, 0.0 0.5, 0.0, 1.0, 0.0 0.304 0.188
0.0, 0.0, 2.0, 0.0 0.5, 0.5, 0.5, 0.0 × −0.329 0.063
0.0, 0.0, 0.0, 2.0 1.5, 0.0, 0.0, 0.0 × 0.260 0.075
0.0, 0.0, 2.0, 0.0 1.5, 0.0, 0.0, 0.0 × 0.154 0.138
2.0, 0.0, 0.0, 0.0 1.5, 0.0, 0.0, 0.0 −0.712 0.100 33.75%

D=2.5
0.5, 0.0, 0.0, 2.0 0.0, 0.0, 0.0, 2.0 −0.417 0.200
0.0, 0.0, 0.0, 2.5 0.0, 0.0, 2.0, 0.0 × 0.058 0.200
0.5, 0.0, 2.0, 0.0 0.0, 0.0, 2.0, 0.0 −0.762 0.100
0.5, 0.5, 0.0, 1.5 0.0, 2.0, 0.0, 0.0 × 0.601 0.100
0.5, 0.0, 2.0, 0.0 0.5, 0.0, 1.5, 0.0 −0.642 0.100
1.0, 0.0, 1.5, 0.0 0.5, 0.0, 1.5, 0.0 0.687 0.200
0.5, 0.5, 0.0, 1.5 2.0, 0.0, 0.0, 0.0 × 0.601 0.100 40.00%

D=3.0
2.5, 0.0, 0.5, 0.0 0.0, 0.0, 0.0, 2.5 × 0.138 0.200
2.5, 0.0, 0.5, 0.0 0.5, 0.0, 0.0, 2.0 × 0.507 0.200
2.5, 0.0, 0.5, 0.0 0.5, 0.0, 2.0, 0.0 × 0.959 0.200
1.5, 0.0, 0.0, 1.5 0.5, 0.5, 0.0, 1.5 × −0.747 0.133
2.5, 0.0, 0.5, 0.0 0.5, 0.5, 0.0, 1.5 × −0.117 0.067
1.5, 0.0, 0.0, 1.5 1.0, 0.0, 1.5, 0.0 × −1.001 0.200 100.00%

Notes: The table presents the set of minimally incongruent weights derived from the optimization problem presented in Section
3.4.3. The components of the sub-treatment vectors are in the following order: (Lessons, Sports, Volunteering, B&A School).
The ∈ M−(d) column indicates if the pairs of sub-treatments are incongruent. The δ(sd, sd−1) column reports the difference
in mean outcomes at sd and sd−1. The w⋆(sd, sd−1) column reports the minimally incongruent weight. The “Incongruent Wt.”
column reports the minimal percentage of possible weight on incongruent comparisons at that D = d. Any positive percentage
indicates where incongruent comparisons are unavoidable. There are 95 total unique comparisons of sub-treatment vectors
that can be made with this sample (19 congruent and 76 incongruent). The set of minimally incongruent weights has 38 of
these comparisons (17 congruent and 21 incongruent).
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Table 2: Overall Aggregate Parameter Estimates

Parameter Estimate S Data Incongruity

I. Regression
α1 -0.061 (0.042) ×

II. Marginal
E[ δ(D) |D > 0] -0.040 (0.035) ×
E[AMATT+(D)|D > 0] -0.087 (0.063) ×

III. Non-marginal
E[AATT(D)|D > 0] -0.167 (0.068)
E[AATT(D)/D|D > 0] -0.218 (0.095)

Observations 214

Notes: Parameter estimates of different target parameters on children’s noncognitive skills.
Standard errors in parentheses obtained by bootstrap (1000 iterations). The “S Data” col-
umn indicates if sub-treatment data are required for estimation. The “Incongruity” column
indicates when incongruent comparisons are present in the parameter. The estimates of
E[AMATT+(D)|D > 0] use the scaled product weights from Equation (7).

Panel I contains an estimate of the coefficient on total enrichment activities from the regression
in Equation (1), which represents the best linear approximation between noncognitive skill and total
enrichment activity. This regression represents the most common way to summarize the relationship
between enrichment activities and noncognitive skills. The estimated coefficient is α̂1 = −0.061 and
is not statistically different from zero at standard levels of significance.21 Given our discussion on
the presence of incongruency in our application above, it follows that, if one aims to interpret this
parameter in marginal terms, then it consists of incongruent comparisons as described in Section
3.2. The regression coefficient also inherits the implicit regression weights discussed in Remark 3.2
above.

Next, Panel II reports estimates of two alternative overall marginal effects parameters. The
first is E[δ(D)|D > 0], where δ(d) := E[Y |D = d] − E[Y |D = d − 1] is the average aggregate
marginal effect. Like the regression coefficient from Panel I, this parameter includes incongruent
marginal sub-treatment effects, but it does not inherit the implicit regression weights (i.e., it is
a non-parametric summary of the aggregate marginal effects). Our estimate of E[δ(D)|D > 0]

is -0.040. The estimated value of this parameter is closer to zero than the regression coefficient,
which indicates that the regression weights put relatively more weight on values of the aggregated
treatment with larger marginal effects in magnitude, in comparison to weighting by the distribution
of D. The second estimate in Panel II is for E[AMATT+(D)|D > 0]; our estimate of this parameter
is -0.087. As discussed above, this parameter is a weighted average of all congruent marginal sub-
treatment effects. Among the parameters reported in this section, this parameter has the strongest

21This estimate and others reported in this section are qualitatively similar to the ones in Caetano, Caetano,
and Nielsen (2024), which finds negative effects of enrichment on noncognitive skills. However, we note that their
bunching/selection-on-unobservables identification strategy is very different from the approach in this section.
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Figure 3: d-Specific Aggregate Parameter Estimates

(a) Aggregate Marginal ATT. (b) Aggregate ATT.

Notes: The figure provides estimates of the target parameters discussed in this paper for enrichment activity
amounts on noncognitive skills in children of low socioeconomic status in 2019. Panel (a) displays estimates
of δ(d) and AMATT+(d) with 95% confidence intervals across all D = d. The value of each estimate, and the
percent change from δ(d) to AMATT+(d), are listed at the bottom of Panel (a): δ(d)—top; AMATT+(d)—
middle; and, percent change—bottom. At D = 3.0 hours of total enrichment, no congruent comparisons
were possible between D = 2.5 and D = 3.0 in the data; hence, the value of NA is reported for AMATT+(d =

3). The estimates of AMATT+(d) use the scaled product weights from Equation (7). Panel (b) displays
estimates of AATT(d) and 95% confidence intervals across all D = d, and an overall AATT which weights
the AATT(d)’s by the distribution of the aggregated treatment D.

claim to being the best way to summarize the effects of marginal increases in the sub-treatments,
though estimating it does require observing a sub-treatment vector satisfying Assumption 1.

Comparing the previous estimates to our estimate of E[AMATT+(D)|D > 0] provides a good
way to assess how much incongruency matters in our application. Relative to our estimate of
E[δ(D)|D > 0], it is more than twice as large in magnitude. The difference in these estimates is
fully explained by whether or not they include incongruent comparisons (since they both weight
across the aggregated treatment using the observed distribution of D), indicating that incongru-
ency has a large impact on the aggregated estimates. To further decompose this difference, Panel
(a) of Figure 3 reports estimates of δ(d) and AMATT+(d) across different values of d. Recall
that, according to Figure 2, δ(d) must include those incongruent comparisons at the disaggregated
level for values of d ∈ {1.5, 2.0, 2.5, 3.0}, which could potentially lead to notable differences in
the estimates of these parameters at those values of the aggregated treatment. This difference
is most striking at D = 2.5, where our estimate of δ(d = 2.5) is 0.103, while our estimate of

34



AMATT+(d = 2.5) is -0.237. In addition, because there are no available congruent marginal sub-
treatment effects at D = 3, AMATT+(d = 3) cannot be estimated and does not contribute to
the estimate of E[AMATT+(D)|D > 0]. There are other smaller differences at other values of d.
Together, these differences explain the disparity between the two overall estimates in the middle
panel of Table 2. Interestingly, relative to E[δ(D)|D > 0], the estimate of α1 is closer to our esti-
mate of E[AMATT+(D)|D > 0]. There are two sources of differences between these two estimates:
α1 includes incongruent marginal sub-treatment effects and inherits a weighting scheme from the
regression. Here, these two issues work in opposite directions—incongruency pushes the estimates
towards zero, while the regression weights push it farther from zero—resulting in the estimate of
E[AMATT+(D) | D > 0] being closer to that of α1 than to that of E[δ(D) | D > 0].

To summarize, there are two main explanations for the variation in the estimated values of
the various marginal effect parameters considered here. First, for parameters that are averages
of the aggregate marginal effects, it is not possible to avoid incongruent comparisons. This is
a byproduct of large changes in the composition of sub-treatments across different values of the
aggregated treatment. Second, there appears to be notable heterogeneity in sub-treatment-specific
marginal effects. Estimates of congruent sub-treatment marginal range from -0.762 to 0.752 (these
are reported in Table 1), implying that variations in weights across different summary marginal
effect parameters are important.22

Finally, in Panel III of Table 2, we report estimates of the non-marginal parameters that we
discussed in Section 4. Unlike E[AMATT+(D)|D > 0], neither of these parameters requires the sub-
treatments to be observed; moreover, they do not suffer from non-unique weights, nor do they include
incongruent comparisons. The first of these, E[AATT(D)|D > 0], is the overall aggregate average
treatment effect on the treated for those who participated in the treatment. Our estimate is -0.167.
This is notably larger in magnitude than any of the preceding estimates, though it is hard to directly
compare them, as the underlying building blocks are different. Here, the underlying building blocks
are AATT(d)—among sub-treatments that aggregate to d, the average of the effect of each sub-
treatment relative to being untreated. Estimates of AATT(d) are displayed in Panel (b) of Figure
3 for different values of d. Averaged across sub-treatments, we find our estimates of the effect of
participating in different types of enrichment activities are largest in magnitude among those who
participate in few enrichment activities (i.e., for D = 0.5 and 1.0). The last parameter considered in
the table is E[AATT(D)

D

∣∣D > 0]; our estimate of this parameter is -0.218. This parameter summarizes
the average treatment effect on the treated per unit of treatment received. Recall that, as in Section
4.1, α1 can be interpreted as a weighted average of the same scaled baseline-to-d building blocks.
But our estimate of α1 is very different from our estimate of E[AATT(D)

D

∣∣D > 0]—our estimate of
E[AATT(D)

D

∣∣D > 0] is over three times as large in magnitude. This difference is fully explained by
differences in the weighting schemes for each case. In our view, if a researcher did not insist on
reporting a marginal effect parameter, the non-marginal effect parameters considered in Panel III

22To be clear, our estimates of sub-treatment-specific marginal effects are likely to be quite imprecise. Nevertheless,
mechanically, these estimates contribute non-trivially to the estimates of the summary marginal effect parameters
that we have emphasized here.
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would provide a good way to summarize the effects of enrichment activities on noncognitive skills.
This would be especially true for an application where the types of enrichment activities that the
child participated in were not observed. However, using a regression to summarize these types of
parameters seems to perform poorly, at least relative to calculating each AATT(d) individually and
then manually averaging them.

6 Conclusion

Aggregated treatment variables are widely used in empirical work focused on causal inference. They
often streamline the narrative of the paper, simplify empirical strategies, accommodate data limita-
tions, and improve precision in estimation. But as we have shown in this paper, these conveniences
can come at a cost: the marginal effects of an aggregated treatment can be difficult to interpret.
The root of the problem lies in the fact that comparisons across different values of an aggregated
treatment can include incongruent sub-treatment comparisons. We have shown that these compar-
isons lead to negative weight issues, so that even if all marginal sub-treatment effects were positive,
one could still find a negative aggregate marginal effect.

Our paper also provides a set of solutions to this underappreciated problem in the causal in-
ference literature. First, we proposed non-marginal estimands that avoid incongruent comparisons
altogether and which can be implemented even when sub-treatment data are unavailable. This
provides a general path forward even when SUTVA fails for the treatment variable the researcher
wishes to use. Second, when sub-treatment data are available, researchers can also continue focus-
ing on marginal estimands by applying desirable weighting schemes that restrict attention solely
to congruent comparisons. With this in mind, we note that reporting non-marginal estimands has
an underappreciated advantage: it offers greater robustness to violations of SUTVA, which may
lead cautious researchers to consider non-marginal effects as a conservative complement to marginal
estimands.

In order to emphasize issues related to aggregation, many of our results were in the context
of no selection (Assumption 2), an ideal setting for causal inference. The insights developed in
our paper, however, extend beyond this setting. They are also relevant for other identification
strategies—including selection on observables, instrumental variables, regression discontinuity de-
signs, difference-in-differences, and bunching. Relative to our setting—where all units are exchange-
able and thus comparable (in expectation)—these strategies impose restrictions on the set of per-
missible comparisons used to estimate causal effects. As a result, they may either attenuate or
exacerbate the extent to which incongruent sub-treatment comparisons enter the estimand, relative
to the baseline case studied in this paper. A fuller understanding of how aggregation interacts with
these identification strategies remains an important direction for future work.
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A Defining Sub-treatments

In the main text, we invoked Assumption 1, which rules out hidden versions of the sub-treatments.
We maintained this assumption for the sub-treatment vector S specified by the researcher. Still,
in any given application, it may not be obvious how to define this sub-treatment vector, and this
section provides some clarifying discussion on this point.

To start with, we introduce some extra notation. Given a researcher-specified definition of sub-
treatments, let V denote the set of versions of the treatment. In our running example from the main
text,

V = {homework,music, sports}.

Note that, in the main text, we mainly worked in terms of sub-treatment vectors that were elements
of S. Relative to elements of V, an element of S also contains information about the amount of
each sub-treatment.

Now, consider a more disaggregated notion of the versions of the treatment, Ṽ. What we mean
by “more disaggregated” is that there exists a function Ṽ 7→ V such that the elements of Ṽ are all
either the same as some element in V or represent versions of an element of V. For example,

Ṽ = {homework with mom, homework with dad,music, sports},

where the elements in Ṽ homework with mom and homework with dad both map to homework in V.
Define S̃ to be the set of sub-treatment vectors corresponding to the versions of treatment in Ṽ. It
immediately follows that, if Assumption 1 holds with respect to the sub-treatment vectors in S, then
a version of Assumption 1 holds with respect to the sub-treatment vectors in S̃; i.e., if no hidden
versions of the sub-treatments (the second part of SUTVA) holds with respect to one notion of the
sub-treatments, then it necessarily holds with respect to a more disaggregated notion of the sub-
treatments. This is an argument for favoring the more disaggregated notion of the sub-treatments,
as it invokes a weaker version of Assumption 1.

Continuing with the same example, notice that it is possible to create even further sub-versions
of the treatment. For example, a child doing homework with their mother can be disaggregated into
doing homework with their mother in the morning, doing homework with their mother at night,
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etc. The discussion above implies that a version of Assumption 1 would hold with respect to this
definition of sub-treatments as well. This line of thinking can go on and on, becoming more specific
and granular at each step, up to the point of all treatments being fully distinct from each other;
e.g., a child doing homework with their mother, Jane Doe, at 12:39pm on June 20, 2025.23

The discussion above highlights how strong Assumption 1 with respect to low-dimensional sub-
treatments may be in many applications—let alone the version of this assumption for the aggregated
treatment, which motivated the analysis of this paper in the first place. It does not seem farfetched
that, in our running example, Assumption 1 is only plausible for an extremely disaggregated notion
of the sub-treatments. For example, the potential outcome of a child doing an hour of homework
with their mother could also depend on the time of day or the day of the week (or other things).
We conjecture that similar arguments would apply for many treatments in economics.

Observing this degree of granularity is very rare, and, given the implausibility of this assumption
for most versions of treatment, it is possible that the researcher observes treatment at some level
of detail, yet still judges those versions to be too coarse for Assumption 1 to plausibly hold. The
researcher in this case may want to pivot to report non-marginal estimands, which have robust-
ness properties with respect to Assumption 1—it requires this assumption to be valid only for a
conceptualizable finite vector of sub-treatments that does not need to be observed.

However, what happens if the researcher wants to identify a marginal estimand? Given the dis-
cussion above, is there any reason that this researcher should not use the most disaggregated notion
of the sub-treatment vector available in the data? While it is true that working with very disag-
gregated notions of the sub-treatment vector does make the corresponding version of Assumption
1 more plausible, there are important tradeoffs: when Assumption 1 holds with respect to a more
aggregated notion of the sub-treatments, using that more aggregated notion of the sub-treatments
suffers less from issues related to incongruity that we emphasized in the main text. This suggests
that, all else equal, it is desirable to use the most aggregated notion of the sub-treatment vector
that satisfies Assumption 1. In that sense, the test discussed in Section 3.4.4 can be implemented
to detect whether there is enough evidence against Assumption 1 for a given level of definition of
S, provided the researcher also observes a more disaggregated notion of sub-treatment vector S̃. A
failure to reject this test may justify using S as the notion of sub-treatment for the analysis. In the
extreme case, if the researcher fails to reject Assumption 1 with respect to the aggregated treatment
D, this may justify not conducting the analyses suggested in this paper. In that case, none of the
issues related to incongruent comparisons that we emphasized in the main text would apply, and the
researcher can work directly with the aggregated treatment rather than the sub-treatments (even if
they are observed).

23Our discussion echoes the Epidemiology literature on this point. For instance, Hernán (2016) states that “The
process of precisely specifying (versions of treatment) never ends. Version #1,000,000 would be very long but still
imprecise. It is impossible to provide an absolutely precise definition of a version of treatment.”
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B Additional Results

This section contains additional details for several results that were briefly discussed in the main
text.

B.1 Minimal Assumptions for Causal Interpretation

For some settings, weaker assumptions than Assumption 2 can be applied to achieve identification.
Here, we introduce weaker assumptions that we may use to give E[Y |D = d]− E[Y |D = d− 1] and
E[Y |D = d]− E[Y |D = 0] a causal interpretation.

Assumption 6 (No Local Selection). For any d ∈ D>0, and for any sd ∈ Sd and sd−1 ∈ Sd−1,(
Y (sd), Y (sd−1)

)
⊥⊥ S|D ∈ {d− 1, d}.

Assumption 6 is the local version of Assumption 2, where the distribution of potential outcomes
is the same across sub-treatment groups among those sub-treatment groups that have aggregated
treatment equal to d or d−1 only. Because this assumption is local, it is weaker than Assumption 2,
yet it still implies that E[Y (s)|S = s′] = E[Y |S = s], but only among sub-treatments s, s′ ∈ M(d),
rather than any sub-treatments.

Next, we consider an assumption that is weaker than Assumption 2 that may still be used to
identify the non-marginal causal effect parameters ATT(sd).

Assumption 7 (No Selection on Untreated Potential Outcomes). Y (0) ⊥⊥ S.

Assumption 7 says that untreated potential outcomes are independent of sub-treatments. It
is implied by Assumption 2 but not by Assumption 6. It is helpful to compare Assumption 7 to
Assumption 6. One dimension in which Assumption 7 is weaker is that it only involves untreated
potential outcomes rather than potential outcomes of different sub-treatments. This allows for
certain forms of selection into a particular sub-treatment that are ruled out by Assumption 6. On
the other hand, Assumption 7 requires some degree of similarity (i.e., in terms of untreated potential
outcomes) across units that experience very different sub-treatments, which is not required for the
local version of unconfoundedness in Assumption 6; see Lewis (1973) for an argument that the
nearest, or most similar, world/sub-treatment to the one observed should be primarily considered
as the counterfactual.

B.2 Interpreting Regressions with Marginal Building Blocks

Since regressions are frequently used in estimation in applications with aggregated treatments,
this section provides results on interpreting regressions that include the aggregated treatment as a
regressor, formalizing some of the claims made in the main text.24 We consider interpreting α1 from

24As discussed in the main text, all of our identification results above can hold conditional on observed covariates,
which is likely to be an important extension for many applications. There would be considerable differences for
interpreting regressions that also include covariates as they would introduce extra issues even if there were no sub-
treatments (see, for example, Angrist (1998), Aronow and Samii (2016), Sloczynski (2022), and Hahn (2023)). We
leave this extension for future work.
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the regression of the outcome on the aggregated treatment variable in Equation (1). The following
result provides a decomposition of α1 in terms of aggregate marginal effects.

Proposition B.1. Whether sub-treatments are observed or unobserved, α1 from the regression in
Equation (1) can be decomposed as

α1 =
N̄∑
d=1

ωreg(d) ·
(
E[Y |D = d]− E[Y |D = d− 1]

)
where the regression weights are

ωreg(d) :=

(
E[D|D ≥ d]− E[D]

)
· P(D ≥ d)

Var(D)

and satisfy the properties: (i) ωreg(d) ≥ 0 for all values of d ∈ D>0, (ii)
N̄∑
d=1

ωreg(d) = 1, and (iii)

ωreg(d) is decreasing in distance from E[D].

The proof is provided in the Supplementary Appendix (Caetano, Caetano, Callaway, and Dyal,
2025). Proposition B.1 amounts to the discrete analog of a well-known result in Yitzhaki (1996) on
interpreting regressions like the one in Equation (1) with a continuous regressor (see also Callaway,
Goodman-Bacon, and Sant’Anna (2025) for some related results on interpreting regressions with an
ordered, discrete regressor in the context of difference-in-differences). Notice that all of the terms in
the expression for α1 involve the aggregated treatment variable, not the sub-treatments. In particu-
lar, α1 is equal to a weighted average of E[Y |D = d]−E[Y |D = d− 1]. The weights are all positive,
which is a good property and one that does not always hold for interpreting regressions in various
other contexts (e.g., regressions that include covariates (Hahn (2023)), regressions with multiple
treatments (Goldsmith-Pinkham, Hull, and Kolesár (2024)), and two-way fixed effects regressions
(de Chaisemartin and D’Haultfoeuille (2020))). The other notable property of the regression weights
is that they are largest for values of the aggregated treatment that are close to the mean of D. This
indicates that a byproduct of summarizing the effects of the treatment using a regression is that
certain effects of marginal increases in the sub-treatments are systematically weighed more heavily
than others, depending on their corresponding amount of the aggregated treatment. This is likely
to be an undesirable property of the regression weights in most applications.

The last thing to mention in this section is that all of our previous results on interpreting
E[Y |D = d]−E[Y |D = d−1] in the presence of sub-treatments continue to apply to all of the terms
that show up in the expression for α1. For example, combining the expression for α1 with the result
in Theorem 3.1 implies that comparisons across incongruent sub-treatment vectors can contribute
to α1.

Taken together, the discussion here implies that running a regression using the aggregated
treatment as a regressor (i) does not alleviate issues related to incongruent sub-treatment vectors,
and (ii) also introduces a somewhat strange implicit weighting scheme to combine information
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across different values of the aggregated treatment. Issue (i) corresponds exactly to the issues
that we discussed in Section 3. Issue (ii) can be directly addressed, simply by averaging E[Y |D =

d] − E[Y |D = d − 1] over the distribution of D, rather than inheriting the weighting scheme from
the regression.25

B.3 Identification of ˜AMATT+(d)

Finally, in this section, we discuss identification of ˜AMATT+(d), which was defined in Equation (5).

Relative to previous identification results, in order to recover ˜AMATT+(d), we need to additionally
identify P

(
S(d) = sd, S(d− 1) = sd−1|D ∈ {d, d− 1}

)
for (sd, sd−1) ∈ M+(d).

Assumption 8 (Latent Sub-treatment Independence). For all d ∈ D>0,

S(d) ⊥⊥ S(d− 1)
∣∣D ∈ {d− 1, d}.

Assumption 8 says that the sub-treatment actually experienced at, say, the lower level of the
aggregated treatment is not informative about which sub-treatment would have been experienced
at the higher level of the aggregated treatment. It is difficult to think of examples where this as-
sumption is plausible in the types of applications that we have emphasized in the paper, particularly
where the aggregated treatment is a summary of the sub-treatments rather than itself causal—this
is a main reason why we have relegated this assumption (and identifying ˜AMATT+(d)) to the ap-
pendix. Perhaps the leading case where this assumption would be plausible is one in which the
sub-treatments are assigned in a sequential procedure where the aggregated treatment is randomly
assigned in the first step and then the sub-treatments are randomly assigned conditional on the as-
signment of the aggregated treatment; though, at least to some extent, this assignment mechanism
goes against the notion of aggregated treatment that we have considered, as it is more aligned to the
mediation analysis case. Also, notice that a by-product of Assumption 8, is that, by construction,
there would be incongruent latent types that occur with positive probability, implying that this
assumption is incompatible with Assumption 5 from the main text.

Proposition B.2. Under Assumptions 1, 2, 4 and 8, if sub-treatments are observed, ˜AMATT+(d)

is identified and given by

˜AMATT+(d) =
∑

(sd,sd-1)∈M+(d)

 P
(
S=sd

∣∣D=d
)
× P(S=sd−1

∣∣D=d-1
)∑

(s′d,s
′
d-1

)∈M+(d)

P
(
S=s′d

∣∣D=d
)
× P(S=s′d-1

∣∣D=d-1
)
 ·

(
E[Y |S=sd]− E[Y |S=sd-1]

)
.

The proof is provided in SA.3 of the Supplementary Appendix (Caetano, Caetano, Callaway,

and Dyal, 2025). Proposition B.2 shows that ˜AMATT+(d) is identified when the sub-treatments
25Recall from Section 3.4.2 that E[Y |D = d] − E[Y |D = d − 1] recovered the average marginal causal effect of

the sub-treatments under Assumption 3, which said that the marginal effect of all sub-treatments at a given level of
the treatment was constant, βd. In order for the regression in Equation (1) to recover the average marginal causal
effect of the sub-treatments requires strengthening this assumption so that βd = β, which is constant across d. This
argument holds by combining the arguments in Section 3.4.2 with the result in Proposition B.1.
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are observed and under Assumption 8. It is equal to a weighted average of the comparison of mean
outcomes among congruent sub-treatment vectors corresponding to the aggregate amount of the
aggregated treatment being equal to d or d − 1. The weights are the same as the scaled product
weights suggested in the discussion of AMATT+(d) in Equation (7) above.

C Proofs

This section provides proofs for all the results in the paper.

C.1 Proofs of Results from Section 3.1

The following proposition relates the observed difference of mean outcomes across sub-treatment
vectors with adjacent levels of the aggregated treatment to causal quantities.

Proposition C.1. Under Assumption 1, the difference in mean outcomes between sub-treatment
vectors at adjacent levels of the aggregated treatment can be decomposed as

E[Y |S = sd]− E[Y |S = sd−1] = MATT(sd, sd−1) +B(sd, sd−1)

where

B(sd, sd−1) := E[Y (sd−1)|S = sd]− E[Y (sd−1)|S = sd−1]

which is a selection bias term. If, in addition, Assumption 2 (or Assumption 6) holds, then
B(sd, sd−1) = 0, so that

MATT(sd, sd−1) = E[Y |S = sd]− E[Y |S = sd−1]

The first part of Proposition C.1 shows that the comparison of means between sub-treatment
vectors with adjacent levels of the aggregated treatment can be decomposed into a marginal average
treatment effect on the treated term and a selection bias term. The second part shows that, under
Assumption 2, the same comparison of means is equal to MATT(sd, sd−1). The result in Proposition
C.1 holds irrespective of whether sd and sd−1 are congruent sub-treatments.

Proof of Proposition C.1. To show the first part, notice that

E[Y |S = sd]− E[Y |S = sd−1] = E[Y (sd)− Y (sd−1)|S = sd]

+
(
E[Y (sd−1)|S = sd]− E[Y (sd−1)|S = sd−1]

)
= MATT(sd, sd−1) +B(sd, sd−1)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, and then by adding and subtracting E[Y (sd−1)|S = sd]; and the second equality holds
by the definitions of MATT(sd, sd−1) and B(sd, sd−1).
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For the second part, notice that

MATT(sd, sd−1) = E[Y (sd)|S = sd]− E[Y (sd−1)|S = sd]

= E[Y (sd)|S = sd, D = d or D = d− 1]

− E[Y (sd−1)|S = sd, D = d or D = d− 1]

= E[Y (sd)|S = sd, D = d or D = d− 1]

− E[Y (sd−1)|S = sd−1, D = d or D = d− 1]

= E[Y (sd)|S = sd]− E[Y (sd−1)|S = sd−1]

= E[Y |S = sd]− E[Y |S = sd−1]

where the first equality hold by the definition of MATT(sd, sd−1); the second equality holds because
D is fully determined by S (and S being equal to sd or sd−1 implies that D is either equal to d or
d−1); the third equality holds by Assumption 2 (or Assumption 6); the fourth equality holds again
because S fully determines D; and the last equality holds by writing potential outcomes in terms
of their observed counterparts.

Proposition C.2. Under Assumption 1, the difference in mean outcomes between sub-treatment
vectors at identical levels of the aggregated treatment can be decomposed as

E[Y |S = sd]− E[Y |S = s′d] = SATT(sd, s
′
d) + SB(sd, s

′
d)

where

SB(sd, s
′
d) := E[Y (s′d)|S = sd]− E[Y (s′d)|S = s′d]

which is a selection bias term. If, in addition, Assumption 2 (or Assumption 6) holds, then
SB(sd, s

′
d) = 0, so that SATT is identified and is given by

SATT(sd, sd′) = E[Y |S = sd]− E[Y |S = s′d]

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

C.2 Proofs of Results from Section 3.2

Proposition C.3. For any weighting function w(sd, sd−1) such that

(i)
∑

sd∈Sd
w(sd, sd−1) = P(S = sd−1|D = d− 1)

(ii)
∑

sd−1∈Sd−1
w(sd, sd−1) = P(S = sd|D = d)
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E[Y |D = d]− E[Y |D = d− 1] =
∑

(sd−1,sd)∈M+(d)

w(sd, sd−1) ·
(
E[Y |S = sd]− E[Y |S = sd−1]

)
+

∑
(sd−1,sd)∈M−(d)

w(sd, sd−1) ·
(
E[Y |S = sd]− E[Y |S = sd−1]

)
Proof of Proposition C.3. Notice that, for any weighting function w(sd, sd−1) that satisfies prop-
erties (i) and (ii),

E[Y |D = d]− E[Y |D = d− 1]

=
∑
sd∈Sd

P(S = sd|D = d) · E[Y |S = sd]−
∑

sd−1∈Sd−1

P(S = sd−1|D = d− 1) · E[Y |S = sd−1]

=
∑
sd∈Sd

∑
sd−1∈Sd−1

w(sd, sd−1) · E[Y |S = sd]−
∑

sd−1∈Sd−1

∑
sd∈Sd

w(sd, sd−1) · E[Y |S = sd−1]

=
∑
sd∈Sd

∑
sd−1∈Sd−1

w(sd, sd−1) ·
(
E[Y |S = sd]− E[Y |S = sd−1]

)
=

∑
(sd−1,sd)∈M+(d)

w(sd, sd−1) ·
(
E[Y |S = sd]− E[Y |S = sd−1]

)
+

∑
(sd−1,sd)∈M−(d)

w(sd, sd−1) ·
(
E[Y |S = sd]− E[Y |S = sd−1]

)
where the first equality holds by applying the law of iterated expectations to each term (and because
the aggregated treatment is fully determined by the sub-treatment); the second equality holds from
properties (i) and (ii) of the weights, and because the first term does not depend on sd−1 and the
second term does not depend on sd; the third equality holds by re-arranging the summations and
combining terms; and the last equality holds by separating the summation in the previous line
among congruent and incongruent comparisons across sub-treatment vectors.

Proof of Theorem 3.1. The result holds immediately from Propositions C.1 and C.3.

C.3 Proofs of Results from Section 3.3

Lemma C.1 (Congruent Sub-treatment Existence). For every sd−1 ∈ Sd−1 such that d > 0, there
always exists a vector sd ∈ Sd such that sd ≻+++ sd−1. That is, for non-empty Sd−1 there will exist an
sd ∈ Sd that is congruent with sd−1.

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

Lemma C.2 (Unit Exchange Property). Let sd ∈ Sd ⊂ S, which satisfies the ℓ1 norm ||sd||1 = d

and S ⊆ ZK
≥0, which is the vector space of non-negative integers with dimension K. If K ≥ 2 and
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d > 0, then there exists s′d ∈ Sd with coordinates j and l where j ̸= l such that

sd = s′d + 1j − 1l,

where 1j and 1l are the unit vectors for coordinates (sub-treatments) j and l.

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

Lemma C.3 (Productive Chain Progression). Take any sd, s
′
d ∈ Sd with d > 0 such that ||sd −

s′d||1 > 2, where at least for some jth and lth coordinates sd,j < s′d,j and sd,l > s′d,l. There exists a
vector s⋆d ∈ Sd such that s⋆d = sd+1j−1l for some coordinates j and l, and ||sd−s′d||1 > ||s⋆d−s′d||1 ≥
2. That is, there always exists a vector s⋆d which is a unit-exchange towards the terminating vector
s′d which strictly decreases in distance ||s⋆d − s′d||1.

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

Proposition C.4 (Chain Algorithm). Let sd, s
′
d ∈ Sd ⊂ ZK

≥0 for d > 0 and K ≥ 2. For some
B ∈ Z+, there is a finite sequence of vectors

x(0) = sd, x
(1), . . . , x(B−1), x(B) = s′d

such that each vector in the sequence, indexed by b, is a unit exchange

x(b+1) = x(b) + 1j − 1l

of neighboring vectors which makes strict progress towards s′d, where 1j and 1l are unit vectors for
the jth and lth coordinate.

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

Proof of Proposition 3.1. Given no (local) selection (Assumption 2 or 6), we know by Proposi-
tion C.1 that disaggregate comparisons across average outcomes between sub-treatments at adjacent
levels of total treatment are MATT’s, and by Proposition C.2 that disaggregate comparisons across
average outcomes between sub-treatments at identical levels of total treatment are SATT’s. Under
this condition, suppose that d > 0 and K ≥ 2 so that Sd is not empty. Hence, M+(d) is not empty,
but M−(d) may or may not be empty. If M−(d) is empty, then the claim holds vacuously. So, we
proceed with non-empty M−(d).

Take any pair (sd, sd−1) ∈ M−(d) and, by Lemma C.1, any congruent s′d−1 of sd in Sd−1.
Denote m(s) := E[Y |S = s] for any s ∈ S. Then from Proposition C.1 the incongruent MATT can
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be written as:

MATT−(sd, sd−1) = m(sd)−m(sd−1)

= m(sd)−m(s′d−1) +m(s′d−1)−m(sd−1)

= MATT+(sd, s
′
d−1) +

(
m(s′d−1)−m(sd−1)

)
where the first equality is the definition of MATT; the second equality holds by addition and
subtraction of m(s′d−1); and the third equality holds by the definition of MATT+.

From here, there are two cases:

1. s′d−1 is a unit exchange of sd−1, s′d−1 = sd−1 + 1j − 1l, where 1j and 1l are unit vectors for
some j and l coordinates;

2. s′d−1 is not a unit exchange of sd−1, s′d−1 ̸= sd−1 + 1j − 1l, for any j and l coordinates.

Case 1: If s′d−1 is a unit exchange of sd−1, then by Lemma C.2, s′d−1 = sd−1+1j−1l. Consequently,
m(s′d−1)−m(sd−1) = SATT(s′d−1, sd−1) by the definition of SATT. Thus, the claim holds:

MATT+(sd, s
′
d−1) +m(s′d−1)−m(sd−1) = MATT+(sd, s

′
d−1) + SATT(s′d−1, sd−1)

by definition of SATT in Proposition C.2, the substitution average treatment effect on the treated.

Case 2: Suppose s′d−1 is not a unit exchange of sd−1. That is, s′d−1 ̸= sd−1 + 1j − 1l, for any j and
l coordinates.

Next, our goal is to express the difference m(s′d−1)−m(sd−1) as unit exchanges between m(s′d−1)

to m(sd−1). To do this, we need a set of vectors, chained by the unit exchange property, that begins
at s′d−1 and eventually terminates at sd−1. We approach this task algorithmically. To build such a
chain, we know by Lemma C.2 that there exists a vector s

(1)
d−1 ∈ Sd−1 which is a unit exchange of

s′d−1 such that s′d−1 = s
(1)
d−1 + 1j′ − 1l′ for some coordinates j′ and l′. Next, by Lemma C.3, there

always exists a vector that makes productive progress from s′d−1 towards the terminating vector
sd−1. By Proposition C.4, these conditions guarantee the procedure terminates at sd−1 in finitely
many steps without any repeating patterns.

In the first step of this procedure, we may write:

MATT−(sd, sd−1) = MATT+(sd, s
′
d−1) +m(s′d−1)−m(sd−1)

= MATT+(sd, s
′
d−1) +

(
m(s′d−1)−m(s

(1)
d−1)

)
+
(
m(s

(1)
d−1)−m(sd−1)

)
= MATT+(sd, s

′
d−1) + SATT(s′d−1, s

(1)
d−1) +

(
m(s

(1)
d−1)−m(sd−1)

)
where the first equality holds from above; the second equality holds by the addition and subtraction
of m(s

(1)
d−1); and the third equality holds by the definition of SATT in Proposition C.2. If s(1)d−1 is

a unit exchange of sd−1 also, s(1)d−1 = sd−1 + 1j′′ − 1l′′ for coordinates j′′ and l′′, then the original
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claim holds:

MATT−(sd, sd−1) = MATT+(sd, s
′
d−1) + SATT(s′d−1, s

(1)
d−1) + SATT(s

(1)
d−1, sd−1)

by the definition of SATT in Proposition C.2. Otherwise, we continue this process by iteratively
applying the unit exchange property, Lemma C.2, that satisfies productive progression towards the
terminating vector, Lemma C.3, at each step b until a chain ϕ := {s′d−1, s

(1)
d−1, . . . , s

(B−1)
d−1 , sd−1} of

size |ϕ| = B ∈ Z+ is formed. This implies that we may write the incongruent parameter as a
telescoping sum of all m(s

(b)
d−1) in the chain:

MATT−(sd, sd−1) = MATT+(sd, s
′
d−1) +

B−1∑
b=0

SATT(s
(b)
ϕ, d−1, s

(b+1)
ϕ, d−1)

where s
(b)
ϕ is linked in the chain ϕ to the vector s

(b+1)
ϕ by the unit exchange property in Lemma

C.2. Hence, the claim holds. Note that Proposition C.4 permits a set of possible chains denoted by
C(s′d−1, sd−1), where ϕ is possibly one element of many in this set.

Lemma C.4 (Single Pairwise Congruent Sub-treatment Vector). For any sd−1, s
′
d−1 ∈ Sd−1 such

that sd−1 = s′d−1 + 1j − 1l for some coordinates j and l, which is a unit exchange of s′d−1, there
must exist one sd ∈ Sd that is congruent with sd−1 and s′d−1.

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

Proof of Proposition 3.2. Given no (local) selection (Assumption 2 or 6), we know by Proposi-
tion C.1 that the disaggregate comparisons of average outcomes between sub-treatments at adjacent
levels of aggregated treatment are MATT’s, and by Proposition C.2 that disaggregate comparisons
of average outcomes between sub-treatments at identical levels of aggregated treatment are SATT’s.
Under this condition, take any sd−1, s

′
d−1 ∈ Sd−1 for d > 0 such that ∥sd−1 − s′d−1∥1 = 2 and sd−1

is a unit exchange of s′d−1. That is, by Lemma C.2, sd−1 = s′d−1 + 1j − 1l, where 1j and 1l are unit
vectors for some coordinates j and l.

Next, by Lemma C.4, there exists a unique sub-treatment vector sd ∈ Sd which is congruent
to both sd−1 and s′d−1. Now define m(s) := E[Y |S = s] for any s ∈ S. See that the substitution
average treatment effect on the treated may be expressed as:

SATT(sd−1, s
′
d−1) = m(sd−1)−m(s′d−1)

=
(
m(s′d)−m(s′d−1)

)
+
(
m(sd−1)−m(s′d)

)
= MATT+(s′d, s

′
d−1)− MATT+(s′d, sd−1)
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where the first quality is the definition of SATT in Proposition C.2 using the m(·) notation; the sec-
ond equality holds by the addition and subtraction of m(s′d); and the final equality holds by the def-
initions of the congruent parameters MATT+. Thus, any SATT between two sub-treatment vectors
that share a unit exchange is equivalent to the difference between two congruent MATT+(s′d, ·).

C.4 Proofs of Results from Section 3.4

C.4.1 Proofs of Results from Section 3.4.1

Lemma C.5 (Double Binomial Reduction). The sum
∑K

d=1

(
K
d

)
·
(

K
d−1

)
is equivalent to

(
2K
K−1

)
, for

all K ∈ Z.

The proof is provided in SA.1 of the Supplementary Appendix (Caetano, Caetano, Callaway, and
Dyal, 2025).

Proposition C.5 (Number of Congruent and Incongruent Contrasts with Binary Sub-treatments).
For a given number of binary sub-treatments K > 1, there are

∑K
d=1

(
K
d

)(
K
d−1

)
=
(

2K
K−1

)
distinct

contrasts, and the proportion of incongruent contrasts will increase as K increases - illustrated in
Figure 1. The number of congruent disaggregated contrasts present is

∑K
d=1K ·

(
K−1
d−1

)
= K · 2K−1,

and can be presented as a row-scaled Pascal’s (Hui-Khayyam’s) Triangle. The number of incongruent
disaggregated contrasts present is the difference between total contrasts and congruent contrasts.

Proof of Proposition C.5. Given K > 1 binary sub-treatments, we show that for all d ∈ D: (i)
the total number of distinct disaggregated contrasts is

∑K
d=1

(
K
d

)(
K
d−1

)
=
(

2K
K−1

)
; and (ii) the number

of congruent disaggregated contrasts is
∑K

d=1K ·
(
K−1
d−1

)
.

1. Total distinct contrasts: First, we show that the number of K-tuples that sum to D = d is(
K
d

)
. The size of a tuple is K. Since each variable is binary, each element in the K-tuple

is either zero or one. For each tuple to sum to D = d, there must be exactly d ones, and
K − d zeros. This amounts to choosing how many ways we can put d ones among K empty
positions. Hence, this is a problem of the form “how to choose d objects from K total objects”,
which is known to be determined by the binomial coefficient,

(
K
d

)
. This implies, for K binary

sub-treatments, that the number of distinct sub-treatment vectors that lie in the aggregate
set Sd is equal to

(
K
d

)
, or |Sd| =

(
K
d

)
.

Similarly, if we wanted to know how many K-tuples would sum to D = d − 1, we would
write

(
K
d−1

)
. Recall that marginal contrasts are made between adjacent aggregate sets, Sd

and Sd−1. So, for every d ∈ D>0, there are |Sd| · |Sd−1| =
(
K
d

)
·
(

K
d−1

)
possible comparisons.

Hence, the total number of distinct contrasts that can be made is the sum across all d ∈ D,∑K
d=1

(
K
d

)
·
(

K
d−1

)
, as desired. And by Lemma C.5, this sum

∑K
d=1

(
K
d

)
·
(

K
d−1

)
=
(

2K
K−1

)
.

2. Congruent distinct contrasts: Next, we aim to find the number of congruent contrasts out of
the total number of contrasts. We demonstrate that the number of congruent contrasts for K
binary sub-treatments is

∑K
d=1K ·

(
K−1
d−1

)
= K · 2K−1.
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Recall that congruent vectors of treatment must satisfy s′ = s+ 1j , for some jth component.
Since the sub-treatments are binary, and thus the elements in each position may not exceed
one, this implies that one position must remain fixed while all other positions may vary because
all positions for ones must be identical except for one position in the binary case. That is, there
are K− 1 available positions/elements that we are free to vary as long as the tuple sums to d.
Hence, at each d, we are counting the number of ways we can put d ones in K − 1 positions,(
K−1
d

)
. We can do this for each position in the tuple, which is of length K. Therefore, at each

d, the number of congruent contrasts is K ·
(
K−1
d

)
. The total number of congruent contrasts

can be summed across all d ∈ D,
∑K

d=0K ·
(
K−1
d

)
= K ·

∑K
d=0

(
K−1
d

)
. Notice that by the

binomial theorem, this sum of binomial coefficients can be written as
∑K

d=0

(
K−1
d

)
= 2K−1.

Hence, the number of congruent contrasts is the product: K · 2K−1.

Corollary C.1 (Asymptotic Congruity Is Proportionally Zero). As the number of binary sub-
treatments increases, the proportion of congruent contrasts in the marginal set approaches zero.
That is,

lim
K→∞

∣∣M+
∣∣∣∣M∣∣ = lim

K→∞

∣∣M∣∣− ∣∣M−∣∣∣∣M∣∣ = 0

In other words, as the number of sub-treatments grows, the proportion of incongruity dominates.

Proof of Corollary C.1. Here we prove that as we let the number of binary sub-treatments
grow to infinity, the proportion of congruent contrasts approaches zero. That is, we show that:

limK→∞

∣∣M+
∣∣∣∣M∣∣ = 0. If the results in Proposition C.5 holds, the we can write:

lim
K→∞

∣∣M+
∣∣∣∣M∣∣ = lim

K→∞

K ·
∑K

d=1

(
K−1
d−1

)∑K
d=1

(
K
d

)(
K
d−1

) = lim
K→∞

K · 2K−1(
2K
K−1

)
which are the results from Proposition C.5. Next, see that the denominator can be rewritten as:(

2K

K − 1

)
=

(2K)!

(K − 1)!(2K − (K − 1))!
=

(
K

K + 1

)
(2K)!

K!(2K −K)!
=

(
K

K + 1

)
·
(
2K

K

)
This implies that we are trying to find the following limit:

lim
K→∞

K · 2K−1(
K

K+1

)
·
(
2K
K

) (8)

Before taking the limit, notice that we can restate the denominator by Stirling’s approximation
formula for factorials. First, note that:

(2K)! ∼
√

2π(2K) ·
(
2K

e

)2K

=

(√
π · 22K+1 ·K

4K+1
2

e2K

)
(9)
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and similarly,

K! ∼
√
2πK ·

(
K

e

)K

=

(√
2π ·K

2K+1
2

eK

)
(10)

where Stirling’s formula states, for some n > 0, that n! ∼
√
2πn ·

(
n
e

)n, and e denotes Euler’s
constant. Both (9) and (10) imply that the denominator of the limit (8) can be approximated well
by the following expression:(

2K

K

)
=

(2K)!

K!K!
∼

√
π·22K+1·K(4K+1)/2

e2K(√
2πK(2K+1)/2

eK

)2 =

√
π · 22K+1 ·K(4K+1)/2

2π ·K2K+1
= π−1/2 · 22K ·K−1/2 (11)

Therefore, by (11) above, the limit (8) becomes:

lim
K→∞

K · 2K−1(
K

K+1

)
·
(
2K
K

) ∼ lim
K→∞

K · 22K−1

π−1/2 · 22K ·K−1/2

= lim
K→∞

√
π · K(K + 1)

K1/2
· 2(K−1)−2K

=
√
π · lim

K→∞

K3/2 +K1/2

2K+1
= 0

where the first line holds by applying Stirling’s formula; the second and third lines hold by algebra;
and the fourth equality holds since the numerator of the limit grows at the polynomial rate and
the denominator grows at the exponential rate. This implies that as the number of binary sub-
treatments increases, the proportion of congruent contrasts tends to zero, as claimed.

Proposition C.6 (Number of Congruent and Incongruent Contrasts with Trinary Sub-treatments).
For a given number of trinary sub-treatments K > 1 with common support {0, 1, 2}, there are∑K

d

(
K
d

)
2
=
∑K

d=1

∑⌊d/2⌋
r=0

(
K
r

)
·
(
K−r
d−2r

)
distinct contrasts, and the proportion of incongruent contrasts

will increase as K increases - illustrated in Figure 1b. The number of congruent disaggregated
contrasts present is the row-sum of a row-scaled extended trinomial triangle, whose elements are the
sum of the top-three adjacent elements. The number of incongruent disaggregated contrasts present
is the difference between total contrasts and congruent contrasts.

The proof is provided in the Supplementary Appendix (Caetano, Caetano, Callaway, and Dyal,
2025).

C.4.2 Proofs of Results from Section 3.4.2

Proposition C.7 (Homogeneity of Effects). Under Assumptions 1-3, and for any d ∈ D>0,

E[Y |D = d]− E[Y |D = d− 1] = βd.
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Proof of Proposition C.7. Under Assumption 3, we have that MATT+(sd, sd−1) = βd for all
(sd, sd−1) ∈ M+(d). Furthermore, by Proposition 3.2, for any (sd, sd−1) ∈ M−(d) and any ϕ ∈
C(sd, sd−1),

MATT−(d) = MATT+(sd, s
′
d−1) +

B−1∑
b=0

MATT+(s
(b)
ϕ, d, s

(b)
ϕ, d−1)−

B−1∑
b=0

MATT+(s
(b)
ϕ, d, s

(b+1)
ϕ, d−1)

= βd + |B| · βd − |B| · βd = βd

Hence, all marginal effects are βd at D = d. Thus, from Theorem 3.1, E[Y |D = d] − E[Y |D =

d− 1] = βd, as desired.

Proposition C.8 (No Incongruent Behavior). Under Assumptions 1, 2, 4, and 5, no incongruent
comparisons are present in the aggregate contrast, E[Y |D = d]− E[Y |D = d− 1].

Proof of Proposition C.8. Under Assumptions 4 and 5, there exists a latent treatment joint
distribution F (S(d), S(d− 1)) of the sub-treatments where for all d ∈ D:

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)
= 0, if (sd, sd−1) ∈ M−(d)

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)
≥ 0, if (sd, sd−1) ∈ M+(d)

Under conditions (i) and (ii), w(sd, sd−1) = P(S(d) = sd, S(d− 1) = sd−1|D ∈ {d, d− 1}).
Next, we show that the above probabilities satisfy the criteria of Proposition C.3 and put no

weight on incongruent comparisons. To show this, first note that the sum:∑
sd−1∈Sd−1

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)

= P
(
S(d) = sd

∣∣D ∈ {d, d− 1}
)
= P

(
S(d) = sd

∣∣D = d
)
= P

(
S = sd

∣∣D = d
)
,

where the first equality holds by the law of total probability; the second equality holds by As-
sumption 4; and the last equality holds by writing potential outcomes in terms of their observed
counterparts. Similarly, we have:∑

sd∈Sd

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)
= P

(
S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)

= P
(
S(d− 1) = sd−1

∣∣D = d− 1
)
= P

(
S = sd−1

∣∣D = d− 1
)
,

where the first equality holds by the law of total probability; the second equality holds by As-
sumption 4; and the last equality holds by writing potential outcomes in terms of their observed
counterparts. Both results fulfill the requirements of Proposition C.3.

Lastly, we demonstrate that the assumptions imply that there are no weights on incongruent
comparisons. Denote m(sd, sd−1) := E[Y |S = sd]− E[Y |S = sd−1]. This implies that the marginal
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contrast decomposition becomes:

E[Y |D = d]− E[Y |D = d− 1] =
∑

(sd−1,sd)∈M+(d)

w(sd, sd−1)
(
E[Y |S = sd]− E[Y |S = sd−1]

)
+

∑
(sd−1,sd)∈M−(d)

w(sd, sd−1)
(
E[Y |S = sd]− E[Y |S = sd−1]

)
=

∑
(sd−1,sd)∈M+(d)

w(sd, sd−1) ·m(sd, sd−1) +
∑

(sd−1,sd)∈M−(d)

w(sd, sd−1) ·m(sd, sd−1)

=
∑

(sd−1,sd)∈M+(d)

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)
·m(sd, sd−1)

where the first equality holds by Proposition C.3; the second equality holds by definition of m(sd, sd−1);
and the third equality is implied by the condition on F (S(d), S(d− 1)). Thus, no incongruent com-
parisons exist in the aggregate marginal contrast as required.

C.4.3 Proofs of Results from Section 3.4.3

Proof of Proposition 3.3. We prove the result by contrapositive. Consequently, this proof shows
that sets of weights which are non-zero for only congruent pairs of sub-treatment vectors must imply
that for any sub-treatment k, and all d ∈ D>0, E[Sk|D = d] ≥ E[Sk|D = d− 1].

For any sub-treatment indexed by k ∈ {1, . . . ,K}, and any d ∈ D, see that we may write the
difference in conditional means of sub-treatment Sk for adjacent values of aggregated treatment D

as:

E[Sk|D = d]− E[Sk|D = d− 1]

= E[ E[Sk|Sd = sd, D = d] |D = d]− E[ E[Sk|Sd−1 = sd−1, D = d− 1] |D = d− 1]

=
∑
sd∈Sd

P(S = sd|D = d) · E[Sk|Sd = sd, D = d]

−
∑

sd−1∈Sd−1

P(S = sd−1|D = d− 1) · E[Sk|Sd = sd−1, D = d− 1]

=
∑
sd∈Sd

P(S = sd|D = d) · gk(sd)

−
∑

sd−1∈Sd−1

P(S = sd−1|D = d− 1) · gk(sd−1)

=
∑
sd∈Sd

P(S = sd|D = d) ·
( ∑

sd−1∈Sd−1

P(S = sd−1|D = d− 1)
)
· gk(sd)

−
∑

sd−1∈Sd−1

( ∑
sd∈Sd

P(S = sd|D = d)
)
· P(S = sd−1|D = d− 1) · gk(sd−1)

=
∑
sd∈Sd

∑
sd∈Sd

w(sd, sd−1) ·
[
gk(sd)− gk(sd−1)

]
(12)

where the first equality holds by the law of iterated expectations on Sd; the second equality holds
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by the definition of conditional probability; the third equality holds by defining gk(sd) := E[Sk

∣∣Sd =

sd, D = d] as the value of the kth sub-treatment given the vector of sub-treatment sd which ag-
gregates to D = d; and the fourth equality holds by the second axiom of probability (unity); the
fifth equality follows by algebra and by the definition of the class of weighting functions with the
properties outlined in Proposition C.3.

In Equation (12), we defined gk(sd) as the value of the kth sub-treatment when the vector of
sub-treatments was sd. Notice that this is a simple constant, the realized value of Sk, which lies at
the kth component of the vector sd:

gk(sd) = E[Sk|S = sd, D = d] = E[Sk|S = sd] =
∑

sk∈Sk

P(Sk = sk|S = sd) · sk

= P(Sk = sk|S = sd) · sk = sk (13)

where the first equality holds by definition of gk(sd); the second equality holds since d is fully
determined by sd; the third equality holds by the definition of expectation; the fourth equality
holds because the only realization that Sk can take is the value of Sk from the sub-treatment vector
sd found in the conditioning set; and the fifth equality holds since P(Sk = sk|S = sd) = 1 due to
the previous fact.

Now, given the result in Equation (13), see that if a pair of sub-treatment vectors is congruent,
(sd, sd−1) ∈ M+(d), then

gk(sd)− g(sd−1) = sd,k − sd−1,k =

1, if sd,k > sd−1,k

0, if sd,k = sd−1,k

(14)

which holds by the definition of congruency. Any two sub-treatment vectors which can be written
as sd = sd−1+1k, where 1k is a unit vector for the kth sub-treatment, are considered congruent and
lie in the set M+(d) at any d ∈ D.

Since the weights in Equation (12) are the same as in Proposition C.3, then they are positive
and sum to one. This, together with Equation (14), implies that if weights were only non-negative
for congruent sub-treatment vectors, then (12) would be non-negative. Thus, take any weighting
function which satisfies the properties in Proposition C.3 and puts non-negative weight on congruent
sub-treatment vectors only, and denote it as w+(·, ·). From (12), for any sub-treatment k, we have:∑
sd∈Sd

∑
sd∈Sd

w(sd, sd−1) ·
[
gk(sd)− gk(sd−1)

]
=
∑
sd∈Sd

∑
sd∈Sd

w+(sd, sd−1) ·
[
gk(sd)− gk(sd−1)

]
=

∑
(sd,sd−1)∈M+(d)

w+(sd, sd−1) · 1
{
gk(sd) > gk(sd−1)

}
≥ 0 (15)

where the first line holds since only positive weights are placed on the congruent comparisons of sub-
treatments, denoted by w+(·, ·); the second equality holds by the result in (14), since differences
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in sub-treatment k must be either one or zero for congruent vectors of sub-treatments; and the
inequality in the third line holds because the weights must be non-negative by Proposition C.3.

Lastly, the inequality in (15) implies that, for any weighting scheme that applies positive weight
to only congruent pairs of sub-treatments, the difference in conditional means for any sub-treatment
k in (12) must satisfy

E[Sk|D = d]− E[Sk|D = d− 1] ≥ 0 ⇐⇒ E[Sk|D = d] ≥ E[Sk|D = d− 1],

which states the claim, as desired. As d increases, the means of sub-treatments must not decline
in order to rationalize fully congruent weighting schemes. Violations of this inequality signal that
weight on incongruent sub-treatments is inevitable.

C.5 Proofs of Results from Section 4.1

Proposition C.9. Under Assumption 1, the difference in mean outcomes for the group that expe-
rienced sub-treatment sd relative to the untreated group can be decomposed as

E[Y |S = sd]− E[Y |S = 0K ] = ATT(sd) + UB(sd)

where

UB(sd) := E[Y (0)|S = sd]− E[Y (0)|S = 0K ]

which is a selection bias term. If, in addition, Assumption 2 holds, then UB(sd) = 0, so that

ATT(sd) = E[Y |S = sd]− E[Y |S = 0K ]

where 0K denotes the zero vector of length K for the untreated group.

Proposition C.9 shows that ATT(sd) is identified if the sub-treatments are observed and under
Assumption 2 (or Assumption 7).

Proof of Proposition C.9. For the first part, notice that

E[Y |S = sd]− E[Y |S = 0K ] = E[Y (sd)|S = sd]− E[Y (0)|S = 0K ]

= E[Y (sd)− Y (0)|S = sd] + E[Y (0)|S = sd]− E[Y (0)|S = 0K ]

= ATT(sd) + UB(sd)

where the first equality holds by writing observed outcomes as potential outcomes; the second equal-
ity holds by adding and subtracting E[Y (0)|S = sd]; and the last equality holds by the definitions
of ATT(sd) and UB(sd). For the second part of the result, it follows immediately from Assumption
2 (or Assumption 7) that UB(sd) = 0, which implies the result.
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Proof of Theorem 4.1. We proved the first part of the result as Proposition C.9. For the second
part, starting from the definition of ATT(d), we have that

AATT(d) = E
[
ATT(S)

∣∣D = d
]

=
∑
sd∈Sd

ATT(sd) · P(S = sd|D = d)

=
∑
sd∈Sd

(
E[Y |S = sd]− E[Y |S = 0K ]

)
· P(S = sd|D = d)

= E[Y |D = d]− E[Y |D = 0]

where the first equality holds from the definition of AATT(d); the second equality expands the
expectation; the third equality holds by Proposition C.9; and the last equality holds by the law of
iterated expectations.
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