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SA Supplementary Proofs

SA.1 Proofs of Results from Section 3

Proof of Proposition C.2. To show the first part, notice that, under Assumption 1,

E[Y |S = sd]− E[Y |S = s′d] = E[Y (sd)|S = sd]− E[Y (s′d)|S = s′d]

= E[Y (sd)− Y (s′d)|S = sd] + E[Y (s′d)|S = sd]− E[Y (s′d)|S = s′d]

= SATT(sd, s
′
d) + SB(sd, s

′
d),

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes; the second equality holds by adding and subtracting E[Y (s′d)|S = sd]; and the third
equality holds by the definitions of SATT(sd, s

′
d) and SB(sd, s

′
d).

For the second part, suppose that Assumption 6 holds. Notice that

SATT(sd, s
′
d) = E[Y (sd)− Y (s′d)|S = sd]

= E[Y (sd)|S = sd]− E[Y (s′d)|S = sd]

= E[Y (sd)|S = sd]− E[Y (s′d)|S = sd, D = d]

= E[Y (sd)|S = sd]− E[Y (s′d)|S = s′d, D = d]

= E[Y (sd)|S = sd]− E[Y (s′d)|S = s′d]

= E[Y |S = sd]− E[Y |S = s′d],

where the first equality hold by the definition of SATT(sd, s
′
d); the second equality follows by

algebra; the third equality holds because D is fully determined by S (since S being equal to sd or
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s′d implies that D is equal to d); the fourth equality holds by Assumption 2 (or Assumption 6); the
fifth equality holds again because S fully determines D; and the sixth equality holds by writing the
potential outcomes into their observed counterparts.

Proof of Lemma C.1. Take any sd−1 ∈ Sd−1 such that d > 0 where there are K total sub-
treatments, i.e. Sd−1 ⊂ ZK

≥0 for all d > 0. By definition of Sd−1, ||sd−1||1 = d − 1. Next, add one
to any coordinate i of the vector sd where the ith element in sd−1 is not at the maximum of the
support of the ith sub-treatment. Denote this vector as s∗ := sd−1 + 1i, where 1i is the unit vector
of the ith coordinate. Without loss of generality, let i = 1. This implies that the ℓ1 norm of s∗ is:

||s∗||1 =
K∑
k=1

|s∗k| =
K∑
k=1

s∗k = (sd−1,1 + 1) + sd−1,2 + · · ·+ sd−1,K = ||sd−1||1 + 1 = (d− 1) + 1 = d

where the first quality holds by the definition of the ℓ1 norm; the second equality holds since each
element of s∗ is in the non-negative integers, Z+; the third equality holds since each element of the
vector s∗ is the corresponding element of vector sd−1, except the first which is added by one; the
fourth equality follows by algebra and the definition of the ℓ1 norm; the fifth equality holds by the
definition of sd−1 ∈ Sd−1; and the last equality holds by addition. Hence, s∗ ∈ Sd by the definition
of Sd, and we may write sd = s∗.

Now, recall that we defined without loss of generality that s∗ = sd−1+1i = sd. This implies that
sd ≻+++ sd−1 by the definition of congruent sub-treatment vectors. Therefore, for any sd−1 ∈ Sd−1

with d > 0, there exists an sd ∈ Sd that is congruent to sd−1.

Proof of Lemma C.2. Since ||sd||1 = d > 0,
∑K

i sd,i = d by the definition of a member of Sd.
This implies there is at least one coordinate j in sd with sd,j > 0. Next, take any other coordinate
l such that l ̸= j. Since K ≥ 2, any l ̸= j can be chosen. Define another vector s′d = sd − 1j + 1l.
Since we know that sd,j ∈ Z+ and sd,j > 0, subtracting one from the jth coordinate is valid. See
that the coordinates:

s′d,j = sd,j − 1 ≥ 0 s′d,l = sd,l + 1 ≥ 0.

Therefore, the ℓ1 norm of s′d is

||s′d||1 =
K∑
i=1

s′d,i =
K∑
i=1

sd,i − 1 + 1 =
K∑
i=1

sd,i = d,

where the first equality holds by the definition of the ℓ1 norm on vectors in the positive orthant;
the second equality holds by the definition of s′d; and the fourth equality holds by the definition of
sd ∈ Sd. This implies that s′d ∈ Sd also. Lastly, notice that:

s′d = sd − 1j + 1l ⇐⇒ sd = s′d + 1j − 1l,
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which holds by rearrangement. Therefore, for any sd ∈ Sd with d > 0 and K ≥ 2, there always exists
a s′d ∈ Sd with coordinates j, l such that sd differs from s′d by exchanging one unit in coordinate l

for one unit in coordinate j, as desired. We say that sd is a unit exchange of s′d.

Proof of Lemma C.3. Take any sd, s
′
d ∈ Sd ⊂ ZK

≥0 with d > 0 such that ||sd − s′d||1 > 2, where
at least for some jth and lth coordinates sd,j < s′d,j and sd,l > s′d,l. By Lemma C.2, there exists a
vector s⋆d ∈ Sd which is a unit exchange of sd. All that is left to show is that ||sd−s′d||1 > ||s⋆d−s′d||1.
Since s⋆d is a unit exchange from sd, then we may write s⋆d = sd + 1j − 1l, where 1j and 1l are unit
vectors for some coordinates j and l such that j ̸= l.

Since we know that any sd,i ∈ Z+ for all i ∈ {1, . . . ,K}, we have

sd,j < s′d,j ⇐⇒ sd,j < sd,j + 1 ≤ s′d,j

⇐⇒ sd,j − s′d,j < sd,j + 1− s′d,j ≤ 0

⇐⇒
∣∣sd,j − s′d,j

∣∣ > ∣∣sd,j + 1− s′d,j
∣∣ ≥ 0

and that

sd,l > s′d,l ⇐⇒ sd,l > sd,l − 1 ≥ s′d,l

⇐⇒ sd,l + s′d,l > sd,l − 1 + s′d,l ≥ 0

⇐⇒
∣∣sd,l + s′d,l

∣∣ > ∣∣sd,l − 1 + s′d,l
∣∣ ≥ 0,

where in both results the first inequality is given; the second line is by addition or subtraction of
one when all elements are in the set of positive integers; and the last line holds by addition or
subtraction of the element s′d,i where i ∈ {j, l}. We will use these facts below. Next, see that:

||s⋆d − s′d||1 = ||sd + 1j − 1l − s′d||1 =
K∑
i=1

∣∣sd,i + 1j,i − 1l,i − s′d,i
∣∣

=

K∑
i ̸=j i̸=l

∣∣(sd,i − s′d,i)
∣∣+ ∣∣(sd,j + 1− s′d,j)

∣∣+ ∣∣(sd,l − 1− s′d,l)
∣∣

<
K∑

i ̸=j i̸=l

∣∣(sd,i − s′d,i)
∣∣+ ∣∣(sd,j − s′d,j)

∣∣+ ∣∣(sd,l − s′d,l)
∣∣ = K∑

i=1

∣∣sd,i − s′d,i
∣∣ = ||sd − s′d||1,

where the first equality holds by the unit exchange property from Lemma C.2; the second equality
holds by the definition of the ℓ1-norm on ZK

≥0; the third equality holds by the expansion of the
sum; the inequality in the fourth line holds by the facts from above; the fifth equality holds by the
rearrangement of the sum; and the sixth equality holds by the definition of the ℓ1-norm again. This
shows that ||sd− s′d||1 > ||s⋆d− s′d||1. Hence, there always exists a vector s⋆d which is a unit-exchange
away towards the terminating vector s′d when ||sd − s′d||1 > 2.
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Lemma SA.1 (Even Distances). For a fixed sd ∈ Sd, take any s⋆d ∈ Sd with d > 0 and K ≥ 2. The
ℓ1-norm distance 0 ≤ ||s⋆d − sd||1 = 2 ·m ≤ 2 · d, for some m ∈ Z+ such that m ≤ d. That is, any
comparison of sub-treatment vectors with the ℓ1-norm in the same aggregation set always results in
an even number between 0 and 2 · d.

Proof of Lemma SA.1. For a fixed sd ∈ Sd, take any element s⋆d ∈ Sd with d > 0 and K ≥ 2.
Since both elements belong to Sd,

||s⋆d||1 = ||sd||1 = d ⇐⇒
K∑
k=1

sk,d =
K∑
k=1

s⋆k,d = d

since all sk,d ∈ Z+. However, sd ̸= s⋆d necessarily. This implies some elements exist such that
s⋆d,j < sd,j and s⋆d,l > sd,l. Hence:

||s⋆d||1 − ||sd||1 = 0 ⇐⇒
K∑
k=1

s⋆d,k −
K∑
k=1

sd,k = 0 ⇐⇒
K∑
k=1

(
s⋆d,k − sd,k

)
= 0

⇐⇒
K∑

k:s⋆d,k>sd,k

(
s⋆d,k − sd,k

)
+

K∑
k:s⋆d,k<sd,k

(
s⋆d,k − sd,k

)
= 0

⇐⇒
K∑

k:s⋆d,k>sd,k

(
s⋆d,k − sd,k

)
=

K∑
k:s⋆d,k<sd,k

(
sd,k − s⋆d,k

)
(S1)

where the first line holds by the definition of Sd; the second line holds by the definition of the
ℓ1-norm for numbers belonging to the non-negative integers; the third line holds by rearranging the
sum; the fourth line holds since some elements of s⋆d are not equal to sd; and the fifth line follows
by algebra. This states that the total amount of units in s⋆d that are greater than the units in sd

must be equal to the number of units in s⋆d that are less than the number of units in sd. Also note
that both of these terms are positive:

K∑
k:s⋆d,k>sd,k

(
s⋆d,k − sd,k

)
> 0

K∑
k:s⋆d,k<sd,k

(
sd,k − s⋆d,k

)
> 0.

Therefore, the ℓ1-norm:

||s⋆d − sd||1 =
K∑
k=1

∣∣s⋆d,k − sd,k
∣∣ = ∑

k:s⋆d,k ̸=sd,k

∣∣s⋆d,k − sd,k
∣∣

=
∑

k:s⋆d,k>sd,k

(
s⋆d,k − sd,k

)
+

∑
k:s⋆d,k<sd,k

(
s⋆d,k − sd,k

)
= 2 ·

∑
k:s⋆d,k>sd,k

(
s⋆d,k − sd,k

)
,

where the first line is by definition of the ℓ1-norm; the second line holds since there will be a
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remainder for all elements not equal between the two vectors; the third line follows by algebra;
and the last line holds by Equation (S1) above. We know that

∑
k:s⋆d,k>sd,k

(
s⋆d,k − sd,k

)
∈ Z+ as

well. Therefore, ||s⋆d − sd||1 is even always. Moreover, notice the distance at any two s⋆d, sd ∈ Sd is
bound by 2 · d from the definition of Sd; because the furthest two vectors could be in this measure
of distance is where one vector has mass d in a coordinate which is zero in the other vector. Lastly,
see that by the Reverse Triangle Inequality,

||s⋆d − sd||1 ≥
∣∣||s⋆d||1 − ||sd||1

∣∣ = ∣∣d− d
∣∣ = 0,

where ||s⋆d||1 = ||sd||1 = d since they are elements of Sd. Thus, the distance function g(s⋆d
∣∣sd) :=

||s⋆d − sd||1 is non-negative, bounded by 2 · d, and must result in an even integer.

Proof of Proposition C.4. Let sd, s
′
d ∈ Sd ⊂ ZK

≥0 for d > 0 and K ≥ 2. We show that there
exists a finite sequence of vectors in Sd which begins at sd and terminates at s′d.

We know by Lemma C.2 that there always exists a unit exchange for any sd ∈ Sd. Thus, there
exists a vector s⋆d ∈ Sd such that s⋆d = sd + 1j − 1l for some coordinates j and l. By Lemma C.3,
there exists a vector s⋆d = s

(1)
d such that ||sd− s′d||1 > ||s(1)d − s′d||1 unless s(1)d = s′d. So, there always

exists a vector that is a unit exchange from the initial vector that is a shorter distance away from
the terminating vector. If s(1)d = s′d, the claim holds trivially. Next, we construct the process for
when s

(1)
d ̸= s′d.

Initialize s
(0)
d = sd. While ||s(b)d − s′d||1 > 0 for index b ∈ Z:

1. Pick coordinates j and l such that the corresponding elements s
(b)
d,j < s′d,j and s

(b)
d,l > s′d,l.

2. Update by the unit exchange property (Lemma C.2): s
(b+1)
d = s

(b)
d + 1j − 1l.

3. If ||s(b+1)
d − s′d||1 > 0, store s

(b+1)
d and iterate this process.

Otherwise, if ||s(b+1)
d − s′d||1 = 0, stop the process.

Here, we show that the process terminates and is finite. We know, by Lemmas C.3 and SA.1, that
at each step, 0 ≤ ||s(b+1)

d − s′d||1 < ||s(b)d − s′d||1 ≤ 2 · d. Also note that at each step, the distance
||s(b+1)

d − s′d||1 − ||s(b)d − s′d||1 between neighboring vectors relative to the terminating vector s′d in
the chain decreases by two:

||s(b+1)
d − s′d||1 − ||s(b)d − s′d||1 =

K∑
i=1

∣∣s(b+1)
d,i − s′d,i

∣∣− K∑
i=1

∣∣s(b)d,i − s′d,i
∣∣

=
K∑

i ̸=j,i̸=l

∣∣s(b)d,i − s′d,i
∣∣+ ∣∣s(b+1)

d,j − s′d,j
∣∣− ∣∣s(b+1)

d,l − s′d,l
∣∣

−
K∑
i=1

∣∣s(b)d,i − s′d,i
∣∣
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=

K∑
i ̸=j,i̸=l

∣∣s(b)d,i − s′d,i
∣∣+ ∣∣s(b)d,j + 1− s′d,j

∣∣− ∣∣s(b)d,l − 1− s′d,l
∣∣

−
K∑
i=1

∣∣s(b)d,i − s′d,i
∣∣

=

K∑
i ̸=j,i̸=l

∣∣s(b)d,i − s′d,i
∣∣+ ∣∣s(b)d,j − s′d,j

∣∣+ 1−
∣∣s(b)d,l − s′d,l

∣∣+ 1

−
K∑
i=1

∣∣s(b)d,i − s′d,i
∣∣

=

K∑
i=1

∣∣s(b)d,i − s′d,i
∣∣+ 2−

K∑
i=1

∣∣s(b)d,i − s′d,i
∣∣ = 2,

where the first equality holds by the definition of the ℓ1-norm; the second equality holds by rear-
rangement of the sum; the third equality holds by the definition of s(b+1)

d as a unit exchange of s(b)d ;
the fourth equality holds by properties of the absolute value; and the fifth and sixth equalities hold
by algebra. This demonstrates that each iteration of the process decreases the ℓ1-norm distance by
two.

Since the measure ||s(b)d − s′d||1 for all possible s
(b)
d ∈ Sd is non-negative, bound by 2 · d, always

produces an even number (Lemma SA.1) and decreasing monotonically by two at each step, the
process will eventually converge to exactly zero. Recall the distance between any two linked vectors
in the chain is always two because they are always a unit exchange of one another. Furthermore,
recall the largest distance between two vectors in the set Sd amounts to 2 · d for some d ∈ Z+,
and each distance at each step must be even. Thus, decrements of two from an even number
r = ||sd − s′d||1 = 2 ·m for some m ∈ Z+ such that m < d and 0 < r ≤ 2 · d will eventually reach
zero, which terminates this process. By that, the number of iterations in this process will be equal
to m < d < ∞, which is finite. This implies that the final vector in the chain is s

(B)
d = s′d, as

desired, where B ∈ Z+ and B < ∞. Hence, this process terminates and results in a finite sequence
of vectors {s(0)d = sd, s

(1)
d , . . . , s

(B)
d = s′d}.

Proof of Lemma C.4. Take any sd−1, s
′
d−1 ∈ Sd such that sd−1 = s′d−1 + 1j − 1l. By definition

of congruence, a vector in Sd is congruent to a vector in Sd−1 if and only if sd = sd−1 +1k for some
coordinate k where 1k is the unit vector in the kth coordinate. Since Sd is not empty, by Lemma
C.1, there always exists a congruent vector sd of sd−1 ∈ Sd−1. Notice that

sd−1 = s′d−1 + 1j − 1l ⇐⇒ sd−1 + 1l = s′d−1 + 1j ⇐⇒ sd = s′d,

where the first equality holds by assumption; the second equality follows by algebra; and the third
equality holds by the definition of a vector in Sd. Note that sd ≻+++ sd−1 (is congruent to sd−1), and
s′d ≻+++ s′d−1 (is congruent to s′d−1) by definition of congruency. But, sd = s′d. Hence, sd ≻+++ sd−1

6



and sd ≻+++ s′d−1. This implies there is one sd ∈ Sd that is congruent with both sd−1 and s′d−1, as
desired. Note this vector can be found in two ways: (i) by adding one to the vector sd−1 in the
corresponding coordinate l; or (ii) by adding one to the vector s′d−1 in the corresponding coordinate
j.

Proof of Lemma C.5. We prove Lemma C.5 by induction, for any K ∈ Z+ such that K ≥ 1,
that

∑K
d=1

(
K
d

)
·
(

K
d−1

)
is equivalent to

(
2K
K−1

)
. First, the base case is when K = 1. We have that:

K∑
d=1

(
K

d

)
·
(

K

d− 1

)
=

(
1

1

)
·
(
1

0

)
= 1,

and for the claim: (
2K

K − 1

)
=

(
2

1− 1

)
= 1

as desired. So, the claim holds true for K = 1. And, for K = 2, the sum is:

K∑
d=1

(
K

d

)
·
(

K

d− 1

)
=

(
2

1

)
·
(
2

0

)
+

(
2

2

)
·
(
2

1

)
= (2) · (1) + (1) · (2) = 4,

and for the claim: (
2K

K − 1

)
=

(
22̇

2− 1

)
=

(
4

1

)
= 4

as desired. So, the claim holds true for K = 2. Next, we make the induction hypothesis (IH) that,
for any K = k, the result holds true:

k∑
d=1

(
k

d

)
·
(

k

d− 1

)
=

(
2k

k − 1

)
. (IH)

Next, we take the induction step. Take K = k+1 ∈ Z+. To show that
∑k+1

d=1

(
k+1
d

)
·
(
k+1
d−1

)
=

( 2(k+1)
(k+1)−1

)
,

see that on the LHS, we have:

k+1∑
d=1

(
k + 1

d

)
·
(
k + 1

d− 1

)
=

k+1∑
d=1

[(
k

d− 1

)
+

(
k

d

)]
·
[(

k

d− 2

)
+

(
k

d− 1

)]

=

k+1∑
d=1

[(
k

d− 1

)
·
(

k

d− 2

)
+

(
k

d− 1

)
·
(

k

d− 1

)
+

(
k

d

)
·
(

k

d− 2

)
+

(
k

d

)
·
(

k

d− 1

)]

=

k+1∑
d=1

(
k

d− 1

)
·
(

k

d− 2

)
︸ ︷︷ ︸

(I)

+

k+1∑
d=1

(
k

d− 1

)
·
(

k

d− 1

)
︸ ︷︷ ︸

(II)
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+
k+1∑
d=1

(
k

d

)
·
(

k

d− 2

)
︸ ︷︷ ︸

(III)

+
k+1∑
d=1

(
k

d

)
·
(

k

d− 1

)
︸ ︷︷ ︸

(IV)

,

where the first equality holds by binomial recursion; the second equality comes from algebra; and
the third equality holds by the linearity property of the summation operator. We will deal with
each part (I)-(IV) separately.

(I) Observe that:

k+1∑
d=1

(
k

d− 1

)
·
(

k

d− 2

)
=

k∑
m=0

(
k

m

)
·
(

k

m− 1

)
=

k∑
m=1

(
k

m

)
·
(

k

m− 1

)
=

(
2k

k − 1

)
,

where we shift the index to m = d − 1 in the first equality; we drop the m = 0 case since
that term is zero in the second equality; and in the third equality, we apply the inductive
hypothesis (IH).

(II) We have:

k+1∑
d=1

(
k

d− 1

)
·
(

k

d− 1

)
=

k∑
m=0

(
k

d− 1

)
·
(

k

d− 1

)

=

k∑
m=0

(
k

m

)
· k!

m!(k −m)!

=
k∑

m=0

(
k

m

)
· k!

(k −m)!(k − (k −m))!

=
k∑

m=0

(
k

m

)
·
(

k

k −m

)
=

(
2k

k

)
,

where we shift the index to m = d−1 in the first equality; the second equality is by definition
of a binomial coefficient; the third equality is by algebra; and in the fourth equality, we apply
Vandermonde’s identity from combinatorics.

(III) Note that:

k+1∑
d=1

(
k

d

)
·
(

k

d− 2

)
=

k∑
d=1

(
k

d

)
·
(

k

d− 2

)
=

k−2∑
i=0

(
k

i+ 2

)
·
(
k

i

)
=

k−2∑
i=0

(
k

i

)
· k!

(i+ 2)!(k − (i+ 2))!

=
k−2∑
i=0

(
k

i

)
· k!

(k − (i+ 2))!(k − (k − (i+ 2))!
=

k−2∑
i=0

(
k

i

)
·
(

k

k − (i+ 2)

)

=
k−2∑
i=0

(
k

i

)
·
(

k

(k − 2)− i

)
=

(
k + k

k − 2

)
=

(
2k

k − 2

)
,

where the first equality drops the index from k + 1 to k since that term will be zero; we shift
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the index to i = d − 2 in the second equality since the first two terms will be zero in the
sum; the third, fourth, fifth, and sixth equalities are by algebra; and the seventh equality is
by Vandermonde’s identity.

(IV) Note that:

k+1∑
d=1

(
k

d

)
·
(

k

d− 1

)
=

k∑
d=1

(
k

d

)
·
(

k

d− 1

)
=

(
2k

k − 1

)
,

where the first equality happens since at k+1 the term is zero; and the second equality arises
by the induction hypothesis (IH).

Now, by (I)-(IV), we have:

k+1∑
d=1

(
k + 1

d

)
·
(
k + 1

d− 1

)
=

(
2k

k − 1

)
+

(
2k

k

)
+

(
2k

k − 2

)
+

(
2k

k − 1

)
=

[(
2k

k − 1

)
+

(
2k

k

)]
+

[(
2k

k − 2

)
+

(
2k

k − 1

)]
=

(
2k + 1

k

)
+

(
2k + 1

k − 1

)
=

(
2k + 2

k

)
=

(
2(k + 1)

(k + 1)− 1

)
,

as desired. Note that the third and fourth equalities are by the binomial recursive (Pascal’s) identity;
and the fifth equality is by algebra. Thus, we have shown that the claim holds for any K.

Proof of Proposition C.6. Given K > 1 trinary sub-treatments, we show that for all d ∈ D:
(i) the total number of distinct disaggregated contrasts is

∑K
d=1

∑⌊d/2⌋
r=0

(
K
r

)
·
(
K−r
d−2r

)
; and (ii) the

number of congruent disaggregated contrasts is the row-sum of a row-scaled extended trinomial
triangle, whose elements are the sum of the top-three adjacent elements.

1. Total distinct contrasts: First, we show that the number of K-tuples that sum to D = d is∑⌊d/2⌋
r=0

(
K
r

)
·
(
K−r
d−2r

)
. The size of a tuple is K. Since each variable is trinary, each element in

the K-tuple is either zero, one or two. This turns out to be equivalent to the elements of
the trinomial triangle, where the rows are K and the columns are d. The trinomial triangle
is similar to Pascal’s triangle except that each entry is the sum of the above three adjacent
entries. The trinomial triangle takes the following form:

9



K = 0: 1

K = 1: 1 1 1

K = 2: 1 2 3 2 1

K = 3: 1 3 6 7 6 3 1

K = 4: 1 4 10 16 19 16 10 4 1

where it is known that each (K, d)th entry is equal to the trinomial coefficient
(
K
d

)
2

:=∑⌊d/2⌋
r=0

(
K
r

)
·
(
K−r
d−2r

)
. Hence, if we wish to find the total number of distinct contrasts, we

sum over all d ∈ {1, · · · ,K} for the corresponding row (a fixed K), which can be expressed
as

∑K
d

(
K
d

)
2
=

∑K
d=1

∑⌊d/2⌋
r=0

(
K
r

)
·
(
K−r
d−2r

)
, as desired.

2. Congruent distinct contrasts: Next, we show that the number of congruent contrasts for K

trinary sub-treatments is the sum of the rows of an extended trinomial triangle multiplied
by K, where the rows are indexed by K and the columns are indexed by aggregate D = d.
Analogously, the elements that make up this triangle are the sum of the three adjacent elements
in the row above. The extended trinomial triangle has the following form:

K = 1: 1 1

K = 2: 1 2 2 1

K = 3: 1 3 5 5 3 1

K = 4: 1 4 9 13 13 9 4 1

K = 5: 1 5 14 26 35 35 26 14 5 1

For each K, the number of congruent contrasts can be listed and counted for verification by
program.

SA.2 Proofs of Results from Section 4

Lemma SA.2 (Moment Equations for Regression of Y on Aggregated D). For a discrete random
variable D with non-negative support D := {0, . . . , N̄} for some N̄ ∈ Z+, and any non-degenerate
random variable Y , we have the following results:

E[D] =

N̄∑
d=0

d·pd E[D2] =

N̄∑
d=0

d2·pd E[DY ] =

N̄∑
d=0

d·Ed·pd E[Y ] = p0·E0+

N̄∑
d=1

pd·(Ed−E0),

where pd := P (D = d); and Ed := E[Y |D = d],∀d ∈ D.
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Proof of Lemma SA.2. For the first two equations, we have:

E[D] =
∑
d∈D

d · P (D = d) =

N̄∑
d=0

d · pd,

E[D2] =
∑
d∈D

d2 · P (D = d) =

N̄∑
d=0

d2 · pd,

which are both by the definition of expectation, and where pd := P (D = d). For the last two
equations, we have:

E[DY ] = E[E[DY |D]] =
N̄∑
d=0

d · E[Y |D = d] · P (D = d) =
N̄∑
d=0

d · Ed · pd,

E[Y ] = E[E[Y |D]] =
N̄∑
d=0

E[Y |D = d] · P (D = d) =
N̄∑
d=0

Ed · pd = p0 · E0 +
N̄∑
d=1

pd · (Ed − E0),

which both hold by the law of iterated expectations, and Ed := E[Y |D = d],∀d ∈ D.

Lemma SA.3 (Covariance of Outcomes Y and Aggregated Treatment D for Baseline-to-d Primi-
tives). The covariance between a non-degenerate random variable Y and a discrete random variable
D with support D = {0, . . . , N̄} for some N̄ ∈ Z+ can be expressed as:

Cov(Y,D) = E[Y D]− E[Y ] · E[D] =
N̄∑
d=1

d · wd ·
(
E[Y |D = d]− E[Y |D = 0]

d

)
,

where the weight wd = pd · (d− E[D]) represents the weighted distance from the mean of aggregated
treatment D.

Proof of Lemma SA.3. With the results from Lemma SA.2, we show the covariance between Y

and aggregated treatment D can be expressed as:

Cov(Y,D) = E[Y D]− E[Y ] · E[D]

=

N̄∑
d=0

d · Ed · pd −

E0 · p0 +
N̄∑
d=1

Ed · pd

 · E[D]

=

N̄∑
d=1

d · Ed · pd −
N̄∑
d=1

Ed · pd · E[D]− E0 · p0 · E[D]

=

N̄∑
d=1

Ed · pd · (d− E[D])− E0 · p0 · E[D]

=
N̄∑
d=1

Ed · pd · (d− E[D])− E0 ·

1−
N̄∑
d=1

pd

 · E[D]
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=

N̄∑
d=1

pd · (d− E[D]) · Ed −

E0 · E[D]−
N̄∑
d=1

pd · E0 · E[D]


=

N̄∑
d=1

pd · ((d− E[D]) · Ed + E0 · E[D])− E0 · E[D]

=

N̄∑
d=1

pd · (d · Ed − E[D] · (Ed − E0))− E0 ·
N̄∑
d=0

d · pd

=
N̄∑
d=1

pd · (d · Ed − E[D] · (Ed − E0)− d · E0)

=
N̄∑
d=1

pd · (d · (Ed − E0)− E[D] · (Ed − E0))

=

N̄∑
d=1

pd · (d− E[D]) · (Ed − E0) :=

N̄∑
d=1

wd · (E[Y |D = d]− E[Y |D = 0])

=

N̄∑
d=1

d · wd ·
(
E[Y |D = d]− E[Y |D = 0]

d

)
,

where the weight wd = pd · (d− E[D]), as desired.

Lemma SA.4 (Overall Weights with Scaled Baseline-to-d Primitives Sum to One). The weights in
Proposition SA.1 from a regression involving scaled baseline-to-d building blocks sum to one.

Proof of Lemma SA.4. The proof subsumes the proof that the regression weights in Proposition
SA.1 involving scaled baseline-to-d building blocks also sum to one. Note that the sum of the overall
weights:

N̄∑
d=1

∑
s∈Sd

ω̃reg(d) · P(S = sd|D = d) =

N̄∑
d=1

∑
s∈Sd

d · (d− E[D])

V ar(D)
· P (D = d) · P (S = sd|D = d)

=

N̄∑
d=1

d · (d− E[D])

V ar(D)
· P (D = d) ·

∑
s∈Sd

P (S = sd|D = d)

=

N̄∑
d=1

d · (d− E[D])

V ar(D)
· P (D = d) · 1

=

∑N̄
d=1 d

2 − d · E[D]

V ar(D)
· P (D = d)

=

∑N̄
d=1 d

2 · P (D = d)− E[D]
∑N̄

d=1 d · P (D = d)

V ar(D)

=
E[D2]− E[D]2

V ar(D)
=

V ar(D)

V ar(D)
= 1,
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where the first equality holds by definition from Proposition SA.1; the second equality uses the lin-
earity property of the summation operator; the third equality applies the unity axiom of probability;
the fourth equality and fifth equality hold by algebra; the sixth equality holds by the definition of
expectation; and the seventh equality holds by the definition of variance.

Lemma SA.5 (Regression Weights with Scaled Baseline-to-d Primitives Are Negative, Positive
and Zero). The regression weights in Proposition SA.1 involving scaled baseline-to-d building blocks
have negative, positive, and possibly zero sign. That is, sgn(ω̃reg(d)) ∈ {−1, 0, 1}.

Proof of Lemma SA.5. We present here the proof that the regression weights on the scaled-
adjusted contrasts derived from Proposition SA.1 can be negative, positive, or zero. See that for
any d ∈ D>0, the regression weight is defined as:

ω̃reg(d) =
d · (d− E[D])

V ar(D)
· P (D = d).

Notice that, for non-degenerate D, V ar(D) > 0 and P (D = d) ≥ 0. Hence, the regression weight
can be negative, positive, or zero if:

ω̃reg(d) ⋚ 0 ⇐⇒ (d− E[D]) ⋚ 0 ⇐⇒ d ⋚ E[D].

That is, the regression weight from using scaled baseline-to-d building blocks is negative if d < E[D],
positive if d > E[D], and zero if d = E[D].

Proposition SA.1. Whether sub-treatments are observed or unobserved, α1 from the regression in
Equation (1) can be decomposed as follows

α1 =

N̄∑
d=1

ω̃reg(d) · E[Y |D = d]− E[Y |D = 0]

d
,

or, written in terms of sub-treatment vectors, as

α1 =

N̄∑
d=1

∑
sd∈Sd

ω̃reg(d) · P(S = sd|D = d) ·
(
E[Y |S = sd]− E[Y |S = 0K ]

d

)
,

where ω̃reg(d) = d·(d−E[D])
Var(D) · P(D = d), which satisfies the following properties:

(i)
N̄∑
d=1

ω̃reg(d) = 1, (ii)
N̄∑
d=1

∑
sd∈Sd

ω̃reg(d) ·P(S = sd|D = d) = 1, and (iii) ω̃reg(d) ≶ 0 for d ≶ E[D].

Proof of Proposition SA.1. We show that for any number of multivalued sub-treatments K ∈
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Z+ using model (1), that the causal parameter α1 is:

α1 =
N̄∑
d=1

ω̃reg(d) · E[Y |D = d]− E[Y |D = 0]

d

=
N̄∑
d=1

∑
s∈Sd

ω̃reg(d) ·
(
P(S = sd|D = d) · E[Y |S = sd]− E[Y |S = 0K ]

d

)
.

Choose any K ∈ Z+ to be the number of discrete treatments with countably positive finite support,
S1 := {0, 1, . . . , N1}, S2 = {0, 1, . . . , N2}, . . . ,DK = {0, 1, . . . , NK}. Denote the largest possible
level of aggregated treatment as N̄ :=

∑K
k=1Nk. Our aggregated treatment variable is D :=∑K

k=1 Sk with support D := {0, 1, . . . , N̄}. Assuming model (1), the causal parameter α1 is:

α1 =
Cov(Y,D)

V ar(D)
=

E[Y D]− E[Y ]E[D]

E[D2]− E[D]2
.

By application of Lemmas SA.2 and SA.3 into the numerator of α1, we obtain the aggregate pa-
rameter:

α1 =

∑N̄
d=1 d · wd ·

(
E[Y |D=d]−E[Y |D=0]

d

)
V ar(D)

=

∑N̄
d=1 d · (pd · (d− E[D])) ·

(
E[Y |D=d]−E[Y |D=0]

d

)
V ar(D)

=
N̄∑
d=1

d · (d− E[D])

V ar(D)
· P (D = d) ·

(
E[Y |D = d]− E[Y |D = 0]

d

)

:=
N̄∑
d=1

ω̃reg(d) · E[Y |D = d]− E[Y |D = 0]

d
, (S2)

where the weights inherited from the regression are ω̃reg(d) = d·(d−E[D])
V ar(D) · P (D = d), as we had

sought. Notice, by SA.5, that the regression weight will be negative for d < E[D], positive for
d > E[D], and zero if d = E[D].

Next, we expand the result in (S2) to the level of sub-treatments. Denote the vector of sub-
treatment variables as s ∈ S :=×K

k=1 Sk, where S is the Cartesian product of all sub-treatment
supports. Denote the vector of realized sub-treatment values that have elements summing to D = d

as sd. It is sufficient to show that for all s ∈ Sd and all d ∈ D, the difference E[Y |D = d]−E[Y |D = 0]

can be expressed as:

E[Y |D = d]− E[Y |D = 0] =
∑
s∈Sd

P (S = sd|D = d) · E[Y |S = sd]− E[Y |D = 0]

=
∑
s∈Sd

P (S = sd|D = d) · E[Y |S = sd]−

∑
s∈Sd

P (S = sd|D = d)

 · E[Y |D = 0]
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=
∑
s∈Sd

P (S = sd|D = d) · (E[Y |S = sd]− E[Y |D = 0]) . (S3)

Plugging expression (S3) into (S2) produces:

α1 =
N̄∑
d=1

ω̃reg(d) · E[Y |D = d]− E[Y |D = 0]

d

=
N̄∑
d=1

ω̃reg(d) ·
∑

s∈Sd
P (S = sd|D = d) · (E[Y |S = sd]− E[Y |D = 0])

d

=
N̄∑
d=1

∑
s∈Sd

ω̃reg(d) · P (S = sd|D = d) ·
(
E[Y |S = sd]− E[Y |D = 0]

d

)
,

as desired, where the weights satisfy the following properties: (i)
∑N̄

d=1 ω̃
reg(d) = 1 (Lemma SA.4);

(ii)
∑N̄

d=1

∑
sd∈Sd

ω̃reg(d) · P(S = sd|D = d) = 1 (Lemma SA.4); and ω̃reg(d) ≶ 0 for d ≶ E[D]

(Lemma SA.5).

SA.3 Proofs of Results from Appendix B.2

Lemma SA.6 (Covariance of Outcome Y with Aggregated D). Following the results from Lemma
SA.2, we have that the covariance between any non-degenerate random variable Y and a non-
negative, discrete random variable D with support D := {0, . . . , N̄} for some N̄ ∈ Z+, can be
written as:

Cov(Y,D) = E[Y D]− E[Y ] · E[D] =

N̄∑
d=1

 N̄∑
j=d

wj

 ·
(
E[Y |D = d]− E[Y |D = d− 1]

)
,

where wj := pj · (j − E[D]), for all j ∈ D.

Proof of Lemma SA.6. Following the results from Lemma SA.2, see that the covariance between
the outcome Y and aggregated treatment D can be written as:

Cov(Y,D) = E[Y D]− E[Y ] · E[D]

=
N̄∑
d=0

d · Ed · pd −

E0 · p0 +
N̄∑
d=1

Ed · pd

 · E[D]

=
N̄∑
d=1

d · Ed · pd −
N̄∑
d=1

Ed · pd · E[D]− E0 · p0 · E[D]

=

N̄∑
d=1

Ed · pd · (d− E[D])− E0 · p0 · E[D]
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=

N̄∑
d=1

Ed · pd · (d− E[D])− E0 ·

1−
N̄∑
d=1

pd

 · E[D]

=
N̄∑
d=1

pd · (d− E[D]) · Ed −

E0 · E[D]−
N̄∑
d=1

pd · E0 · E[D]


=

N̄∑
d=1

pd · ((d− E[D]) · Ed + E0 · E[D])− E0 · E[D]

=

N̄∑
d=1

pd · (d · Ed − E[D] · (Ed − E0))− E0 ·
N̄∑
d=0

d · pd

=
N̄∑
d=1

pd · (d · Ed − E[D] · (Ed − E0)− d · E0)

=
N̄∑
d=1

pd · (d · (Ed − E0)− E[D] · (Ed − E0))

=

N̄∑
d=1

pd · (d− E[D]) · (Ed − E0) :=

N̄∑
d=1

wd · (Ed − E0), (S4)

where pd := P (D = d); and Ed := E[Y |D = d], ∀d ∈ D. From (S4), we can further decompose the
sum into incremental increases in aggregated treatment intensity:

N̄∑
d=1

wd · (Ed − E0) = w1 · (E1 − E0) +

N̄∑
d=2

wd · (Ed − E0 + Ed−1 − Ed−1)

= w1 · (E1 − E0) + w1 · (E2 − E0) +

N̄∑
d=2

wd · (Ed − Ed−1) +

N̄∑
d=2

wd · (Ed−1 − E0)

= (w1 + w2) · (E1 − E0) +

N̄∑
d=2

wd · (Ed − Ed−1) +

N̄∑
d=3

wd · (Ed−1 − E0 + Ed−2 − Ed−2)

= (w1 + w2) · (E1 − E0) +

N̄∑
d=2

wd · (Ed − Ed−1)

+

N̄∑
d=3

wd · (Ed−1 − Ed−2) +

N̄∑
d=3

wd · (Ed−2 − E0)

= (w1 + w2 + · · · ) · (E1 − E0) +

N̄∑
d=2

wd · (Ed − Ed−1) +

N̄∑
d=3

wd · (Ed−1 − Ed−2)

+ · · ·+
N̄∑

d=N̄−1

wd · (Ed−(N̄−3) − Ed−(N̄−2)) + wN̄ · (EN̄ − EN̄−1)

=

N̄∑
d=1

wd · (E1 − E0) +

N̄∑
d=2

wd · (Ed − Ed−1) + · · ·
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+

N̄∑
d=N̄−1

wd · (Ed−(N̄−3) − Ed−(N̄−2)) + wN̄ · (EN̄ − EN̄−1). (S5)

Notice that, collecting the terms for the difference (E2 − E1) in (S5), we have:

w2 · (E2 − E1) + w3 · (E2 − E1) + · · ·+ wN̄ · (E2 − E1) =

N̄∑
d=2

wd · (E2 − E1).

Similarly, for the difference (E3 − E2) in (S5) we have:

w3 · (E3 − E2) + w4 · (E3 − E2) + · · ·+ wN̄ · (E3 − E2) =

N̄∑
d=3

wd · (E3 − E2),

and so forth. Hence we may rewrite the expression in (S5) as:

N̄∑
d=1

wd · (E1 − E0) +

N̄∑
d=2

wd · (Ed − Ed−1) + · · ·+
N̄∑

d=K−1

wd · (Ed−(N̄−3) − Ed−(N̄−2)) + wN̄ · (EN̄ − EN̄−1)

=

N̄∑
d=1

wd · (E1 − E0) +

N̄∑
d=2

wd · (E2 − E1) +

N̄∑
d=3

wd · (E3 − E2) + · · ·+ wN̄ · (EN̄ − EN̄−1)

=

N̄∑
d=1

(Ed − Ed−1) ·
N̄∑
j=d

wj =

N̄∑
d=1

 N̄∑
j=d

wj

 · (Ed − Ed−1)

=

N̄∑
d=1

 N̄∑
j=d

wj

 ·
(
E[Y |D = d]− E[Y |D = d− 1]

)
,

as desired.

Lemma SA.7 (Variance of Aggregated D). For a discrete random variable D with non-negative
support D := {0, . . . , N̄} for some N̄ ∈ Z+, we may express the variance of D as:

V ar(D) = E[D2]− E[D]2 =

N̄∑
d=1

d · wd,

where wd := pd · (d− E[D]).

Proof of Lemma SA.7.

V ar(D) = E[D2]− E[D]2

=
N̄∑
d=0

d2 · pd −

 N̄∑
d=0

d · pd

 · E[D] =
N̄∑
d=1

d2 · pd −

 N̄∑
d=1

d · pd

 · E[D]

=

N̄∑
d=1

(d2 · pd − d · pd · E[D]) =
N̄∑
d=1

d · pd · (d− E[D]) =
N̄∑
d=1

d · wd,
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where the first equality holds by definition; the second equality holds by Lemma SA.2 and by
applying the unity property of probability; the third equality holds since the term for D = 0 is zero;
and the fourth and fifth equality hold by the summation operator and by algebra.

Lemma SA.8 (Re-expressing the Regression Weight with Marginal Primitives). The regression

weight ωreg(d) = P (D≥d)·(E[D|D≥d]−E[D])
V ar(D) from Proposition B.1 can be written as

∑N̄
j=d wj(∑N̄

d=1 d·wd

) .

Proof of Lemma SA.8. We show that the quantity
∑N̄

j=d wj(∑N̄
d=1 d·wd

) can be expressed as the regression

weight ωreg(d) = P (D≥d)·(E[D|D≥d]−E[D])
V ar(D) . First, see that we can write the conditional expectation,

for any j ∈ Z+:

E[D|D ≥ j] =
∑
d≥j

P (D = d|D ≥ j) · d =
∑
d≥j

P (D = d,D ≥ j)

P (D ≥ j)
· d =

∑
d≥j

P (D = d)

P (D ≥ j)
· d. (S6)

Next, from Equation (S6), note that the numerator of the ratio before is equivalent to:

N̄∑
j=d

wj =
N̄∑
j=d

P (D = j) · (j − E[D]) =
N̄∑
j=d

P (D = j) · j −
N̄∑
j=d

P (D = j) · E[D]

= P (D ≥ d) · E[D|D ≥ d]−
N̄∑
j=d

P (D = d) · E[D]

= P (D ≥ d) · E[D|D ≥ d]− P (D ≥ d) · E[D]

= P (D ≥ d) · (E[D|D ≥ d]− E[D]) , (S7)

where the first equality is by algebra; the second equality is by Equation (S6); the third equality
holds by the complement in Kolmogorov’s axioms of probability. Lastly, we know that by (SA.7)
the denominator in the ratio is V ar(D). Both (S6) and (S7) imply that the regression weight can
be written as:

ωreg(d) =

∑N̄
j=dwj(∑N̄

d=1 d · wd

) =
P (D ≥ d) · (E[D|D ≥ d]− E[D])

V ar(D)
,

as desired.

Lemma SA.9 (Non-negative Weights with Marginal Primitives). The weights in Proposition B.1
from a regression involving marginal building blocks are non-negative.

Proof of Lemma SA.9. First, the aggregate variable D is discrete with positive support no mat-
ter if the support of the discrete sub-treatments are binary or multivalued. Next, note that the
conditional probabilities that make up the weights under causal-identifying assumptions at the
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disaggregated level are non-negative by axioms of probability. Hence, the only term to study non-
negativity is for the ωreg(d) term, ∀d ∈ D := {1, . . . , N̄}, where N̄ ∈ Z+ is the largest possible value
in the support of the aggregated treatment variable D.

For any d ∈ D>0, recall that the regression weight ωreg(d) can be written as: ωreg(d) =
∑K

j=d wj∑N̄
d=1 d·wd

,

where wj = P (D = j) · (d − E[D]). We break the proof into two parts. First we show that the
denominator is positive; and then we prove that the numerator of ωreg(d) is non-negative.

1. Denominator: See that the denominator of ωreg(d) is the variance of D by Lemma SA.7, which
is positive for non-degenerate D. Thus, it suffices to show that the numerator is non-negative.

2. Numerator: We show that the numerator is non-negative. Take any d̄ ∈ {1, . . . , N̄} from
the support of the aggregated treatment D. Assume for the sake of contradiction that the
numerator is negative. This implies the following:

N̄∑
j=d̄

wj < 0 ⇐⇒
N̄∑
j=d̄

P (D = j) · (j − E[D]) < 0

⇐⇒
N̄∑
d=1

P (D = d) · (d− E[D])−
d̄−1∑
d=1

P (D = d) · (d− E[D]) < 0

⇐⇒
N̄∑
d=1

·P (D = d) · d−
N̄∑
d=1

P (D = d) · E[D]−
d̄−1∑
d=1

P (D = d) · d+
d̄−1∑
d=1

P (D = d) · E[D] < 0

⇐⇒ E[D]− E[D] ·
N̄∑
d=1

P (D = d) +

d̄−1∑
d=1

P (D = d) · E[D] <

d̄−1∑
d=1

P (D = d) · d

⇐⇒ E[D]

1−
N̄∑
d=1

P (D = d)

+

d̄−1∑
d=1

P (D = d) · E[D] <

d̄−1∑
d=1

P (D = d) · d

⇐⇒ E[D] · P (D = 0) +

d̄−1∑
d=1

P (D = d) · E[D] <

d̄−1∑
d=1

P (D = d) · d

⇐⇒ E[D]

d̄−1∑
d=0

P (D = d)

 <
d̄−1∑
d=0

P (D = d) · d

⇐⇒ E[D] <

∑d̄−1
d=0 P (D = d) · d∑d̄−1
d=0 P (D = d)

, (S8)

where the first line is by definition of wj ; the second line is by the complement of the previous
sum; the third line is by the distributive property in algebra; the fourth line is by the definition
of expectation and some algebra; the fifth line is by the complement axiom of probability and
algebra; the sixth line is by the definition of probability at D = 0; the seventh line is by
combining the terms on the LHS of the inequality; and the eighth line is by division, given
non-degeneracy of the distribution of D.
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If the relationship in (S8) holds, then any complete set of probabilities for a non-negative,
discrete random variable will satisfy (S8). For this reason, let D be discrete uniform in
probability. That is, ∀d ∈ D, P (D = d) = 1/(N̄ + 1). From (S8), this implies the following
for the LHS of the inequality:

E[D] =

N̄∑
d=0

d · P (D = d) = 0 + 1 ·
(

1

N̄ + 1

)
· · ·+ N̄ ·

(
1

N̄ + 1

)
=

(
1

N̄ + 1

)
·
(
1 + 2 + · · ·+ N̄

)
=

(
1

N̄ + 1

)
·
(
N̄(N̄ + 1)

2

)
=

(
N̄

2

)
, (S9)

where the first equality holds by the definition of expectation; the second equality holds by
the discrete uniform random variable; the third equality follows by algebra; and the fourth
equality holds by the known sum of N̄ natural numbers. For the RHS of the inequality in
(S8), we find that the numerator is:

d̄−1∑
d=0

P (D = d) · d = 0 + 1 ·
(

1

N̄ + 1

)
· · ·+ (d̄− 1) ·

(
1

N̄ + 1

)
=

(
1

N̄ + 1

)
·
(
1 + 2 + · · ·+ (d̄− 1)

)
=

(
1

N̄ + 1

)
·
(
(d̄− 1)d̄

2

)
, (S10)

where the first equality holds by expansion of the sum; the second equality follows by algebra;
and the third equality holds by applying the well known sum of (d̄−1) natural numbers. And
similarly, for the denominator in (S8):

d̄−1∑
d=0

P (D = d) =

d̄−1∑
d=0

(
1

N̄ + 1

)
= d̄ ·

(
1

N̄ + 1

)
, (S11)

where the first and second equalities hold by the definition of the probabilities from a discrete
uniform distribution and by the expansion of the sum, respectively. By (S10) and (S11), the
RHS becomes: ∑d̄−1

d=0 P (D = d) · d∑d̄−1
d=0 P (D = d)

=

(
1

N̄+1

)
·
(
(d̄−1)d̄

2

)
(

d̄
N̄+1

) =

(
d̄− 1

2

)
. (S12)

Thus, by (S9) and (S12), the inequality from (S8) states:

E[D] <

∑d̄−1
d=0 P (D = d) · d∑d̄−1
d=0 P (D = d)

⇐⇒
(
N̄

2

)
<

(
d̄− 1

2

)
⇐⇒ N̄ < d̄− 1 ⇐⇒ N̄ + 1 < d̄.

However, this is a contradiction since d̄ ∈ {1, . . . , N̄}. Therefore, it must be that the numerator∑N̄
d=dwj ≥ 0.

Since the denominator is positive and the numerator is non-negative, then their ratio is non-negative.
Thus, the regression weight, and hence all weights under causal identification assumptions, ωreg(d) ≥
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0 for any d ∈ {1, . . . , N̄}.

Lemma SA.10 (Overall Weights from Regression with Marginal Primitives Sum to One). The
weights in Proposition B.1 from a regression involving marginal building blocks sum to one.

Proof of Lemma SA.10. This subsumes the proof that regression weights alone sum to one.
For any weighting function w(sd, sd−1) on the marginal sub-treatment contrasts that satisfies the
properties of Proposition C.3, note that the sum:

N̄∑
d=1

∑
(sd,sd−1)
∈ M(d)

ωreg(d) · w(sd, sd−1) =
N̄∑
d=1

∑
s∈Sd

ωreg(d) · P (S = sd|D = d) · P (S = sd−1|D = d− 1)

=
N̄∑
d=1

∑
(sd,sd−1)
∈ M(d)

∑N̄
j=dwj(∑N̄

d=1 d · wd

) · P (S = sd|D = d) · P (S = sd−1|D = d− 1)

=

N̄∑
d=1

∑N̄
j=dwj(∑N̄

d=1 d · wd

) ·
∑

(sd,sd−1)
∈ M(d)

P (S = sd|D = d) · P (S = sd−1|D = d− 1)

=

∑N̄
d=1

∑N̄
j=dwj(∑N̄

d=1 d · wd

) · 1 =

∑N̄
d=1 d · wd∑N̄
d=1 d · wd

= 1,

where the first and second equality hold by the definition in Proposition B.1. The third equality
uses the linearity property of the summation operator. The fourth and fifth equality follow by
algebra.

Lemma SA.11 (Largest Regression Weight with Marginal Primitives). The regression weights in
Proposition B.1 from a regression involving marginal building blocks are increasing as d approaches
E[D] and decreasing as d moves farther away from E[D].

Proof of Lemma SA.11. Suppose that D is a discrete, non-negative random variable with count-
ably finite support and mean E[D] ∈ R+.1 Denote the support of D as D := {0, 1, . . . , N̄}. From
the regression decomposition using the marginal-type building blocks, we saw that the regression

weight for each realization of D is: ωreg(d) =
∑N̄

j=d wj

V ar(D) , where wj = P (D = j) · (j − E[D]), for
all j ≥ d ∈ D>0. Since each weight is scaled by the variance of D, a positive quantity, it will be
sufficient to show that the weights are increasing/decreasing in the numerator only. Next, we break
the proof into cases.

1The proof holds analogously for the case where support is countably infinite. Simply replace N̄ with ∞.
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1. Case 1 (Increasing): Take any d ∈ D such that d < E[D] and d+ 1 ≤ E[D]. This implies:

N̄∑
j=d

wj =
N̄∑
j=d

P (D = j) · (j − E[D]) = P (D = d) · (d− E[D]) +
N̄∑

j=d+1

P (D = j) · (j − E[D])

= P (D = d) · (d− E[D]) +
N̄∑

j=d+1

wj . (S13)

Therefore, the difference between the weight at d and d+ 1 is:

N̄∑
j=d

wj −
N̄∑

j=d+1

wj = P (D = d) · (d− E[D]) < 0,

since probability is non-negative and by assumption d < E[D]. Therefore, the weight at D = d

is smaller than the weight at D = d+ 1, ωreg(d) < ωreg(d+ 1). This implies that the weights
are increasing as d increases for values of D < E[D].

2. Case 2 (Decreasing): Take any d ∈ D such that d > E[D]; and hence d + 1 > E[D]. From
(A), this implies that the difference between the weight at d and d+ 1 is:

N̄∑
j=d

wj −
N̄∑

j=d+1

wj = P (D = d) · (d− E[D]) > 0,

since probability is non-negative and by assumption d > E[D]. Therefore, the weight at D = d

is larger than the weight at D = d+ 1, ωreg(d) > ωreg(d+ 1). This implies that the weights
are decreasing as d increases for values of D > E[D].

3. Case 3 (Knife-edge): Take any d ∈ D such that d = E[D]; and hence d+1 > E[D]. By (S13),
the difference between the weight at d and d+ 1 is:

N̄∑
j=d

wj −
N̄∑

j=d+1

wj = P (D = d) · (d− E[D]) = 0,

since probability is non-negative and by assumption d = E[D]. From (1), we know that all
weights below E[D] will be increasing. Since d = E[D], then all weights below D = d must
be increasing. From (2), we know all weights above E[D] will be decreasing. Since E[D] = d,
then all weights above D = d must be decreasing. Therefore, the weight at D = d is the
largest when E[D] = d.

4. Case 4 (Fuzzy): Take any d ∈ D such that d < E[D] < d+ 1, and d and d+ 1 are the closest
values on the support of D to E[D]. From (S13), the difference between the weight at d and
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d+ 1 is:

N̄∑
j=d

wj −
N̄∑

j=d+1

wj = P (D = d) · (d− E[D]) < 0,

since probability is non-negative, and by assumption d < E[D]. Hence, the weight at D = d+1

must be larger than the weight at D = d, ωreg(d) < ωreg(d + 1). Next, by re-application of
(S13), see that the difference between weights at D = d+ 1 and D = d+ 2 is:

N̄∑
j=d+1

wj −
N̄∑

j=d+2

wj = P (D = d+ 1) · ((d+ 1)− E[D]) > 0

since probability is non-negative, and by assumption d + 1 > E[D]. That is, the weight at
D = d+ 2 must be smaller than the weight at D = d+ 1, ωreg(d+ 1) > ωreg(d+ 2). Hence,
ωreg(d+1) > ωreg(d) and ωreg(d+1) > ωreg(d+2). This implies that, no matter the absolute
distance between d and d+1 and E[D], the largest weight will always go to the discrete value
just above the mean, E[D].

Cases (1)—(4) imply that the regression assigns weights that increase as d nears E[D] and decrease
beyond it. In case (3), the largest weight occurs exactly at the value of D that equals the mean,
E[D] = d. In case (4), the largest weight is placed on the nearest discrete value of D just above the
mean,

⌈
E[D]

⌉
D, where

⌈
·
⌉
D is the ceiling function with respect to the support of D.

Proof of Proposition B.1. We show that for any K ∈ Z+ using model (1) that the causal pa-
rameter α1 is:

α1 =
N̄∑
d=1

ωreg(d) ·
(
E[Y |D = d]− E[Y |D = d− 1]

)

=

N̄∑
d=1

∑
(sd,sd−1)
∈ M(d)

ω⋆(sd, sd−1) ·
(
E[Y |S = sd]− E[Y |S = sd−1]

)
,

where the weights in Proposition B.1 can be extended to the sub-treatment level in the second
equality under unconfoundedness (Assumption 2).

Choose any K ∈ Z+ to be the number of discrete sub-treatments with positive countably finite
support, S1 := {0, 1, . . . , N1}, S2 = {0, 1, . . . , N2}, . . . ,SK = {0, 1, . . . , NK} for Nk ∈ Z+ for all
k ∈ {1, . . . ,K}. Denote the largest possible level of aggregated treatment as N̄ :=

∑K
k=1Nk. Our

aggregated treatment variable is D :=
∑K

k=1 Sk with support D := {0, 1, . . . , N̄}, which is countably
finite.2 Following the steps in Lemmas SA.2, SA.6 and SA.7 from above, we can write the aggregate

2The proof follows analogously for the countably infinite case, permitting N̄ = ∞.
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parameter from the regression as:

α1 =
Cov(Y,D)

V ar(D)
=

∑N̄
d=1

(∑N̄
j=dwj

)
∑N̄

d=1 d · wd

·
(
E[Y |D = d]− E[Y |D = d− 1]

)
,

where
∑N̄

j=d wj(∑N̄
d=1 d·wd

) is the regression weight, ωreg(d). Next, we know by Lemma SA.8 that ωreg(d) =

∑N̄
j=d wj(∑N̄

d=1 d·wd

) can be written as P (D≥d)·(E[D|D≥d]−E[D])
V ar(D) . Thus, for any K ∈ Z+ number of non-

exclusive, discrete, multivalued sub-treatments, the identified parameter under model (1) is:

α1 =

∑N̄
d=1

(∑N̄
j=dwj

)
∑N̄

d=1 d · wd

·
(
E[Y |D = d]− E[Y |D = d− 1]

)

=

N̄∑
d=1

P (D ≥ d) · (E[D|D ≥ d]− E[D])

V ar(D)
·
(
E[Y |D = d]− E[Y |D = d− 1]

)

:=
N̄∑
d=1

ωreg(d) ·
(
E[Y |D = d]− E[Y |D = d− 1]

)
,

as was to be shown, and where the regression weights satisfy the properties: (i) positive for all

values of d ∈ D (Lemma SA.9); (ii)
N̄∑
d=1

ωreg(d) = 1 (Lemma SA.10); and (iii) decreasing in distance

from E[D] (Lemma SA.11).

SA.4 Proofs of Results from Appendix B.3

Lemma SA.12. Under Assumptions 1, 2, 4 and 8, and if sub-treatments are observed, w̃+(sd, sd−1)

is identified and given by

w̃+(sd, sd−1) =
P
(
S = sd

∣∣D = d
)
× P(S = sd−1

∣∣D = d− 1
)∑

(s′d−1,s
′
d)∈M+(d)

P
(
S = s′d

∣∣D = d
)
× P(S = s′d−1

∣∣D = d− 1
) .

Proof of Lemma SA.12. Notice that

P
(
S(d) = sd, S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)

= P
(
S(d) = sd

∣∣S(d− 1) = sd−1, D ∈ {d, d− 1}
)
× P(S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)

= P
(
S(d) = sd

∣∣D ∈ {d, d− 1}
)
× P(S(d− 1) = sd−1

∣∣D ∈ {d, d− 1}
)

= P
(
S(d) = sd

∣∣D = d
)
× P(S(d− 1) = sd−1

∣∣D = d− 1
)

= P
(
S = sd

∣∣D = d
)
× P(S = sd−1

∣∣D = d− 1
)
,

where the first equality holds by the definition of conditional probability; the second equality uses
Assumption 8 on the first term in the expression; the third equality holds by applying Assumption 4
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to the second term; and the last equality holds immediately since S(d) is the observed sub-treatment
vector given D = d and S(d− 1) is the observed sub-treatment vector given D = d− 1. Then, the
lemma then holds by the definition of w̃+(sd, sd−1) in Equation (6).

Proof of Proposition B.2. The result holds immediately from the definition of ˜AMATT+(d) and
by Proposition C.1 and Lemma SA.12.

SB Supplementary Empirical Analysis

SB.1 Data Description

We present summary statistics from the full sample from Caetano, Caetano, and Nielsen (2024)
based on the sub-treatment categories in Table S1. All elements of Table S1 represent means of
each characteristic by sub-treatment. Participation denotes the number of children in the sample
who participated at all in that specific enrichment activity. Mean hours represents the average
number of hours per week that children in the survey spent on each enrichment activity. Mean
proportion of enrichment represents the average proportion of that particular enrichment activity
out of all enrichment activities performed per week. On average, children spent about 0.64 hours per
week in the sample on enrichment activities, as they have been defined. Moreover, approximately
46% of the sample is ever treated through enrichment activity and 54% of the sample is untreated.
We notice that most participation in enrichment is spent on lessons, and very little enrichment time
is used for before & after school care programs.

Table S1: Summary Statistics of Sub-treatments for Enrichment Activity

Sub-Treatment Participation Mean Hours Mean Proportion of Enrich.

Lessons 0.31 0.25 0.50
Sports, Structured 0.19 0.19 0.25
Volunteer 0.12 0.13 0.18
Before & After School Programs 0.05 0.07 0.07

Notes: Curated data from the Childhood Development Supplement of the PSID (N = 5, 736).

In Figure S1 below, we present the empirical CDF and PDF, respectively. We see bunching
at zero enrichment hours in the distribution of aggregated treatment variable. The median total
enrichment activity lies at zero hours of enrichment in a week. There are fewer and fewer children
that participate in more hours of enrichment. Although seldom, some children are still observed to
be participating in about an average of 4 or more hours of enrichment activities per week.
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Figure S1: Empirical CDF and PDF of Total Hours of Enrichment Activities for All Children

(a) Empirical CDF. (b) Empirical PDF.

SB.2 Full Sample Analysis of Non-Cognitive Skills

This section expands the analysis from Section 5 to the full sample in Caetano, Caetano, and Nielsen
(2024).
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Figure S2: Average Amount of Sub-treatments across Each Level of Aggregated Treatment.

Notes: The figure displays the average amount of each sub-treatment as a function of the total amount of
treatment, D.

Table S2: Overall Aggregate Parameter Estimates for Full Sample

Parameter Estimate S Data Incongruity

I. Regression
α1 0.052 (0.013) ×

II. Marginal
E[δ(D)|D > 0] 0.016 (0.009) ×
E[AMATT+(D)|D > 0] 0.002 (0.014) ×

III. Non-marginal
E[AATT(D)|D > 0] 0.080 (0.026)
E[AATT(D)/D|D > 0] 0.064 (0.032)

Observations 5,736

Notes: Parameter estimates of different target parameters on children’s non-cognitive skills.
Standard errors in parentheses obtained by bootstrap (1000 iterations). The “S Data” col-
umn indicates if sub-treatment data are required for estimation. The “Incongruity” column
indicates when incongruent comparisons are present in the parameter. The estimates of
E[AMATT+(D)|D > 0] use the scaled product weights from Equation (7) in the main text.
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Figure S3: d-Specific Aggregate Parameter Estimates for Full Sample

(a) Aggregate Marginal ATT. (b) Aggregate ATT.

Notes: The figure provides estimates of the target parameters discussed in this paper for enrichment activity
amounts on non-cognitive skills in children for the full sample. Panel (a) displays estimates of δ(d) and
AMATT+(d) with 95% confidence intervals across all D = d. The value of each estimate, and the percent
change from δ(d) to AMATT+(d), are listed at the top of Panel (a): δ(d)—top; AMATT+(d)—middle; and
percent change—bottom. The estimates of AMATT+(d) use the scaled product weights from Equation (7)
in the main text. Panel (b) displays estimates of AATT(d) and 95% confidence intervals across all D = d,
and an overall AATT which weights the AATT(d)’s by the distribution of the aggregated treatment D. At
D = 6.0 hours of total enrichment, only a single congruent comparison is possible between D = 5.5 and
D = 6.0 in the data; hence, confidence intervals are not displayed for AMATT+(d = 6).
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